Сочинение на тему: Физика в моей будущей профессии. Познание Физика в моей жизни и профессии

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Элективный курс «Физика в профессиях» может быть интересен ребятам, которые увлекаются физикой, но пока мало представляют себе и будущую профессию и то, какую роль в ней будет играть физика.

В данном курсе сделана попытка показать использование знаний физики в отдельных областях профессиональной деятельности человека. Программа курсов включает в себя вопросы практического применения законов физики в медицине, метеорологии, военной службе, электротехнике, кулинарии.

Каждый раздел программы содержит в себе следующие части: Теоретический материал, связанные с ним демонстрационный и фронтальный эксперименты, домашнюю работу, экскурсии.

Кроме вопросов самого содержания, к программе выполнено приложение, которое включает в себя список используемой литературы и подборку задач по каждому разделу программы.

Курс рассчитан на работу с ребятами базовой подготовки по физике. Содержание курса расширяет и углубляет знания учащихся по нескольким разделам физики, это «Механика», «Электрические явления», «Атмосферное давление», «Техника и окружающая среда».

Учитель в процессе работы, учитывая желание ребят, может вместе с ними вносить коррективы, отдавая предпочтение каким-либо отдельным темам, экспериментальным работам, придумать и выполнять творческие задания. Наиболее эффективным, действенным способом активизации мышления являются занятия, на которых учащиеся смогут увидеть воздействие физики на производство, на развитие техники. Развитием учения об электричестве, изучением свойств полупроводников, развитием ядерной физики, физики полимеров и т.д. обусловлены достижения в области энергетики, связи, в решении задачи автоматизации и управления производством, в деле создания материалов с наперед заданными свойствами, в решении проблемы освоения космоса, в медицине и т.д.

Для этого следует на протяжении всего элективного курса раскрывать следующие положения:

Знания о природе возникают в результате практической деятельности, наблюдений, эксперимента, производственной деятельности. Следовательно, практика - источник развития знаний;

Правильность знаний о природе проверяется экспериментом, использованием научных знаний в производственной деятельности;

Потребности практики, производства являются движущей силой развития науки, преобразуют производство, оказывая на него огромное влияние. В настоящее время наука стала непосредственной производственной силой.

Сопоставляя причины развития различных отраслей физики, можно сделать вывод: наука развивается под воздействием потребностей практики, производства; практика является движущей силой познания. Поэтому ведущей задачей данного элективного курса является создание ориентационной и мотивационной основы для выбора физико-математического профиля обучения, а также систематическое расширение научного и технического кругозора школьников, разъяснение теснейшей связи между законами физики, современной науки и техники с производством.

Основной формой проведения занятий является урок.

Курс может изучаться в любое время года.

Формы контроля и оценивания учащихся могут быть различными - устный опрос, письменные работы, тестирование, письменные отчёты о проделанных опытах, викторины и др.

Для каждого ученика завершением курса может стать выполнение творческого задания: отчёта об экскурсии, самодельный прибор, записанное интервью с представителем какой-либо профессии, реферат, оформление иллюстрированного альбома о роли физики в данной профессии, самостоятельно составленные или подобранные из пособий тематические задачи, подборка материала из периодических изданий по теме: «Физика в профессии», разработка и демонстрация простых опытов по выбранной теме.

I . Физика в профессии военного. (6 часов)

Механическое движение, инерция, взаимодействие тел, сила, масса, плотность, давление в военной технике. Закон сохранения энергии, закон со хранения импульса в военной технике. Реактивное движение. Комплекс про сантных машин. Характеристики военной техники - проходимость, подвиж ность, поворотливость. Характеристики боевых вертолётов и самолётов, ско

Демонстрации :

Фронтальный эксперимент :

Расчёт давления на грунт различных видов военной техники времён ВОВ (по иллюстрированному раздаточному материалу).

Наблюдение изменения объёма и давления воздуха при его сжатии.

Домашний эксперимент :

II. Физика в профессии повара . (6 часов)

тура кипения жидкостей (вода, масло). Конвекция, теплопроводность, излучение в приготовлении пищи. Печь-гриль. Испарение и кипение в процессе приготовления пищи.

Электропроводность различных жидкостей (чистая, солёная и сладкая вода). Источники тока из овощей и фруктов. Электро- и пожаробезопасность при приготовлении пищи. Тепловое расширение на кухне.

Демонстрации :

Сравнение теплоёмкостей воды и подсолнечного масла

Обнаружение электрического тока, создаваемого овощами при помощи чувствительного гальванометра.

Зависимость сопротивления струи солёной воды от её длины и толщины.

Домашнее задание :

Определение удельной теплоёмкости кастрюли.

Найти дома мерные инструменты, используемые при приготов лении пищи, определить их цену деления, пределы измерения, погрешность измерения.

С учётом энергетической ценности продуктов создать меню низ ко и высоко калорийного завтрака.

Изготовление свистка для чайника.

Э кскурсия :

Столовая

III. Физика в профессии метеоролога . (6 часов)

погоды.

шкалы для измерения температур. Жидкостный барометр и барометр-

Насекомые и растения-барометры. Облака и осадки. Атмосферное электричество. Погода по народным приметам. Влажность, её значение в жизни человека .

Демонстрации :

Различные термометры, барометр, психрометр.

Охлаждение воздуха при расширении.

Фронтальный эксперимент :

Градуировка термометра.

Измерение атмосферного давления в подвале и на четвёртом этаже школы.

Наблюдение выделения энергии при кристаллизации гипосульфита (натрия тиосульфат).

Домашнее задание :

Наблюдение и объяснение физических закономерностей образования облаков, выпадения дождя, образования инея.

Изготовление простейшего самодельного барометра.

Изготовление самодельного гигроскопа.

Изготовление самодельного прибора для предсказания погоды.

IV. Физика в профессии электрика . (6 часов)

тризации. Статическое электричество. Заземление, источники тока - первые и современные.

Электрическая цепь. Действие электрического тока на человека и электробезопасность. Проводники и изоляторы. Виды соединений потребителей ния. Выключатели и предохранители. Короткое замыкание и перегрузка це пи. История происхождения электрической лампочки, различные типы со

Демонстрации :

Электризация различных веществ.

Проводники и непроводники электричества.

Принцип действия плавкого предохранителя.

Накаливание угольного стержня электрическим током.

Фронтальный эксперимент :

Сборка и испытание действия простейшего гальванического элемента.

Изучение последовательного и параллельного соединения проводни ков.

Определение мощности, потребляемой электрической лампочкой

Домашнее задание :

Изготовление игрушки «Электростатическая пляска».

Изготовление самодельного вольтова столба.

Изготовление самодельных приборов, моделей, игрушек с использова нием электрических цепей.

V. Физика в профессии врача . (6 часов)

Использование знаний о строении вещества в медицине. Роль диффуз его отдельными частями.

человека. Тонометр. Тепловые процессы в жизнедеятельности человека. Ка зор.

линзы, лупы, микроскопы, офтальмоскоп (глазное зеркало). Волоконная оп тика в диагностике заболеваний ЖКТ.

Демонстрации :

Расширение газа при нагревании.

Действие тонометра.

Действие световода.

Принцип действия медицинской банки.

Кипение воды при пониженном давлении.

Понижение температуры жидкости при испарении.

Фронтальный эксперимент :

Домашнее задание :

Найдите дома имеющиеся медицинские приборы и объясните принци пы их действия.

Составьте памятку из нескольких советов по сохранению зрения.

Коллективная работа: Оформление альбома «Физика в медицине».

Экскурсия :

ФАП VI . Резерв. (5 часа)

Приложение

к программе «Физика в профессии»

Физика в профессии военного

Группа самолётов одновременно выполняет фигуры высшего пилотажа, сохраняя заданный строй. Что можно сказать о движении самолё тов друг относительно друга?

В подрывной технике применяют сгорающий с небольшой скоростью бикфордов шнур. Какой длины надо взять шнур, чтобы успеть отбе жать на расстояние 300 метров, после того, как он будет зажжён? скорость бега 5 м/с, а пламя по бикфордову шнуру распространяется со скоростью 0,8 м/с.

Советские атомные подводные лодки в 1966 году впервые в мире осу ществили кругосветное плавание под водой и за 1,5 месяца, ни разу не поднявшись на поверхность океана, прошли около 40000 км. С какой скоростью они двигались?

Боевые удары по военным и промышленным объектам г. Берлина впервые были нанесены в августе 1941 года самолётами- торпедоносцами ДБ-3 (конструкции С.В. Ильюшина). Максимальная скорость самолётов этого типа 500 км/ч. Продолжительность эффективной для полёта части суток (ночи) 7 часов, расстояние от аэродрома до цели 1600 км. Могла ли быть совершена операция в течение одной ночи?

Парашютист приземляется со скоростью 10 м/с. Изобразите графиче ски скорость парашютиста.

Почему при повороте различной транспортной и военной техники во дители замедляют ход машин?

С летящего самолёта сбрасывают груз. Упадёт ли он на землю под ме стом бросания? Если нет, то куда он сместится относительно этого места и почему?

Пуля шрапнели 76-миллиметровой пушки имеет форму шарика объёмом 1,15 см 3 . Изготавливаются такие пули из свинца с примесью сурьмы для придания им большей твёрдости. Определите массу всех пуль шрапнели, если их 25 штук, а плотность сплава 9,5 г/см 3 .

Самолёт стоит на взлётной полосе. Какие силы действуют на воздуш ный лайнер? Какова их равнодействующая? Почему? Поясните на чер теже.

Корабельный якорь массой 1,5 т поднимают с помощью лебёдки, кото рая развивает силу тяги 20000 Н. Какова равнодействующая сил, при ложенных к якорю? Каково её направление? Каково движение якоря - равномерное или неравномерное? Почему?

Для изготовления военной техники используются различные сплавы и металлы. К этим веществам предъявляются высокие требования на прочность. Свойство металла сопротивляться проникновению другого металла называется твёрдостью. Твёрдость определяют с помощью стального шарика. Какое давление производит шарик на поверхность стали под действием силы 1500 Н, если площадь отпечатка, оставляе мого этим шариком, равна 0,01 мм 2 .

Вес прославленного советского танка Т-34 составляет 314000 Н, длина той части гусеницы, которая соприкасается с полотном дороги 3,5 м, её ширина 50 см. Вычислите давление танка на грунт, сравните его с тем, которое производите вы при ходьбе.

Согласно воинским правилам солдат в полном снаряжении должен производить давление на почву не более 6 * 10 4 Па. Какую наиболь шую массу вместе со снаряжением он может иметь, если площадь опо ры сапога 200 см 2 .

Ствол орудия весит 110 кH. Масса снаряда 54 кг. Скорость снаряда у дульного среза равна 900 м/с. Определите начальную скорость свобод ного отката ствола орудия в момент вылета снаряда.

3енитный снаряд, выпущенный в вертикальном направлении, достиг нув максимальной высоты, взорвался. При этом образовалось три ос колка. Два из них разлетелись под прямым углом друг к другу, причём скорость одного из них, массой 9 кг, равна 60 м/с, а другого, массой 18 кг - 40 м/с. Третий отлетел со скоростью 200 м/с. Определите гра фически направление полёта третьего осколка. Какова его масса?

Снаряд, получивший при выстреле из орудия начальную скорость 280 м/с, летит вертикально вверх. На какой высоте его кинетическая энергия равна потенциальной?

Физика в профессии повара

Качественные задачи: задачник М.Е. Тульчинского №№ 347, 349, 364, 366, 368, 375, 401,411, 412, 433, 450, 455.

А также следующие:

Какая вода, сырая или кипячёная, скорее закипит, если перед нагрева нием температура их была одинаковой?

Почему, чтобы остудить горячую пищу, на неё дуют?

Стаканы часто трескаются, когда в них наливают горячую воду. Какой стакан скорее треснет, гранёный или гладкий?

Зачем ручку у сковороды делают деревянной или пластмассовой?

Почему чайник перед тем, как закипеть «поёт»?

Можно ли видеть пар?

Почему хлеб черствеет?

Почему овощи нужно варить в закрытой кастрюле?

9. Почему при добавлении в воду соли температура воды понижается?

10. Почему при включении в сеть электроплитки её спираль быстро нака ляется, а провода, подводящие напряжение, не нагреваются сколько- нибудь заметно?

Задачи расчётные - задачник В.И. Лукашик №№ 798, 803, 808, 811(b ), 889, 812, 815, 895, 876, 898, 877, 840 (про газ)

Физика в профессии метеоролога

Пособие С.Д. Абдурахманова Стр. 78 №№ 1, 3,4; Стр. 79 №№ 1, 2, 3, 4; Стр. 81 № 4; Стр. 83 № 1, 2, 3, 4, 5, 6, 7, 9,10, 11,12, 13; Стр. 84 №№ 14 - 35; Стр. 92 № 7.

Физика в профессии электрика

Задачник В.И. Лукашика из разделов «Электризация тел», «Сведения о строении атома», «Электрический ток», «Электрическая цепь», «Последовательное и параллельное соединение проводников», «Работа и мощность тока», «Тепловое действие тока».

Задачник М.Е. Тульчинского раздел «Электричество».

Физика в профессии врача

Какой водой - тёплой или холодно - лучше запивать лекарство, чтобы уско рить его действие (чтобы оно быстрее усваивалось). Почему?

Если эффект воздействия лекарства надо ускорить, то в каком виде лучше порекомендовать больному принимать его в виде таблеток или капель? По чему?

Каково преимущество ингаляции перед другими способами введения в орга ны человека лекарственных веществ?

На каком физическом явлении основано применение в терапии мазей, йода и других наружных лекарственных средств?

Эритроциты крови человека представляют собой диски диаметром прибли зительно 7*10 6 м и толщиной 10 -6 м. В крови объёмом 1 мм 3 содержится около 5*10 6 таких дисков.

а) Если в теле взрослого человека содержится кровь объёмом 5л, то сколько в ней эритроцитов?

б) Масса молекулы гемоглобина составляет около 6,8*10 5 а.е.м. Сколько мо лекул гемоглобина должно содержаться в одном эритроците, если мы будем
считать, что эритроциты состоят полностью из гемоглобина?

(1 а.е.м. =1,66*10 -27 кг)

6. Известно, что нормальное значение максимального давления крови для взрослого человека 110 - 120 мм. рт. cm Каково значение этого давления в Па?

7. Ультразвук частотой 800 кГц - 3 МГц распространяется почти прямолинейно, хорошо фиксируется и поглощается тканями организма. Каким длинам волн соответствует УЗ данных частот?

8. При рассмотрении какого предмета - близкого или далёкого - хрусталик становится более выпуклым? Как при этом меняется его оптическая сила? Сде лайте пояснительный чертёж.

9. Оптическая сила хрусталика в ненапряжённом состоянии 20 дптр. Каково фокусное расстояние такого хрусталика?

10. На рецепте написано +1,5 дптр. Расшифруйте, какие это очки и для какого типа дефекта зрения.

11. Перед вами одинаковые по виду и размеру очки. На одном рецепте к этим очкам было написано +1,5 Д, а на другом +3 Д. Как, используя излучение лампы, отобрать очки, соответствующие рецепту +1,5 Д? У каких очков мас са стёкол больше?

12. В чём сходство глаза с фотоаппаратом? В чём различие между ними? По стройте ход лучей.

Используемая литература:

Ц.Б. Кац «Биофизика на уроках физики». Москва. Просвещение. 1988 г

ИВ. Сотник «Профориентация учащихся при обучении физике». Ж-л «Физика в школе» № 1 1985 г.

М.М. Балашов «О природе». Москва. Просвещение. 1988 г.

Наука. Энциклопедия. Москва. «Росмэн» 2003 г.

Е.М. Минский «Всегда всем весело». Молодая гвардия. 1969 г.

«Цок-цок, молоток...». Киев. «Веселка». 1988 г.

С.Д. Абдурахманов «Исследовательские работы по физике в сельских школах». Москва. Просвещение. 1990 г.

Э.М. Браверманн «Вечера по физике в средней школе». Москва. Просвещение. 1969 г.

ОБ. Кабардин «Факультативный курс физики». Просвещение. 1978 г.

М.А. Алексеева «Физика-юным». Москва. Просвещение. 1980 г.

11. Питер Терви «Привычные вещи и их устройство». АО «Норинт»

1995 г. фонд «Ленинградская галерея».

12. ИЛ. Юфанова «Занимательные вечера по физике в средней школе». Москва. Просвещение. 1990 г.

13. AT . Глазунов «Политическое образование и профориентация учащихся в процессе преподавания физики в средней школе». Москва. Просвещение. 1985 г.

14. А. С. Иванов «Мир механики и техники». Москва. Просвещение. 1993г.

15. В.И. Лукашик «Сборник задач по физике». Москва. Просвещение. 1996 г.

16. М.Е. Тульчинский «Качественные задачи». Москва. Просвещение. 1975 г.

17. А.В. Чеботарёва «Воспитание учащихся и подготовка их к труду при обучении физике». Москва. Просвещение. 198

занятия

Кол-во часов

Тема

Дата

6

Физика в профессии военного

Механическое движение, инерция, взаимодействие тел, сила, масса, плотность, давление в военной технике.

Закон сохранения энергии, закон со хранения импульса в военной технике.

Реактивное движение.

Комплекс про тивотанковых управляемых реактивных снарядов, водомётные двигатели де сантных машин.

Характеристики военной техники - проходимость, подвиж ность, поворотливость.

Характеристики боевых вертолётов и самолётов, ско рость и дальность полёта, взлётная масса, максимальная боевая нагрузка.

Физика в профессии повара.

Энергетическая ценность пищевых продуктов (внутренняя энергия, со держащаяся в продуктах). Различная теплопроводность и различная темпера тура кипения жидкостей (вода, масло).

Конвекция, теплопроводность, излучение в приготовлении пищи.

Печь-гриль. Испарение и кипение в процессе приготовления пищи.

10/4

Электропроводность различных жидкостей (чистая, солёная и сладкая вода). Источники тока из овощей и фруктов.

11/5

Электро - и пожаробезопасность при приготовлении пищи.

12/6

Тепловое расширение на кухне.

13/7

Экскурсия в столовую

Физика в профессии метеоролога.

14/2

Наблюдения за изменениями атмосферного давления для предсказания погоды.

15/3

История возникновения термометра и его различные виды. Различные шкалы для измерения температур.

16/4

Жидкостный барометр и барометр- анероид. Необходимость сведений о погоде людям различных профессий.

17/5

Насекомые и растения-барометры.

18/6

Облака и осадки. Атмосферное электричество. Погода по народным приметам.

19/7

Влажность, её значение в жизни человека .

Физика в профессии электрика.

20/1

Начало изучения электрических явлений. Вредные проявления элек тризации.

21/2

Статическое электричество. Заземление, источники тока - первые и современные.

22/3

Электрическая цепь. Действие электрического тока на человека и электробезопасность. Проводники и изоляторы.

23/4

Виды соединений потребителей электроэнергии. Провода и их изоляция. Основные элементы электроснабже ния.

24/5

Выключатели и предохранители. Короткое замыкание и перегрузка це пи.

25/6

История происхождения электрической лампочки, различные типы со временных лампочек. Производство и потребление электроэнергии.

Физика в профессии врача.

26/1

Использование знаний о строении вещества в медицине.

27/2

Роль диффуз ных процессов в обмене веществ между организмом и средой, а также между его отдельными частями.

28/3

Атмосферное давление в медицине. Принцип действия приборов для забора крови, шприца, медицинской банки. Измерение кровяного давления человека. Тонометр.

29/4

Тепловые процессы в жизнедеятельности человека. Ка лориметрические измерения в диагностике некоторых заболеваний. Теплови зор.

30/5

Дефекты зрения. Очки. Оптические приборы: обычные и бинокулярные линзы, лупы, микроскопы, офтальмоскоп (глазное зеркало).

31/6

Волоконная оп тика в диагностике заболеваний ЖКТ

32/7

Экскурсия в ФАП

33/1

Резерв

34/2

Резерв

35/3

Резерв

Физиком является тот, кто использует свое образование и опыт для изучения и практического применения взаимодействий между материей и энергией в области механики, акустики, оптики, тепла, электричества, магнетизма, излучения, атомной структуры и ядерных явлений.

Карл Дарроу

Популярность технических специальностей растет с каждым днем. Чтобы стать высококлассным специалистов в этой области, необходимы глубокие знания в точных науках: математике, физике, химии, информатике. Любая современная специальность связана с физикой. Сегодня каждый специалист должен уметь работать с необходимой для данной профессии техникой, а также понимать суть технологических процессов.
Физика – фундаментальная наука. В основе всех технических наук, так или иначе, лежат физические законы и явления. Физика тесно связана с инженерией, программированием, радиотехникой, металлургией, машиностроением, авиа- и ракетостроением, электро- и теплоэнергетикой, горным и нефтегазовым делом. Специалисты, знающие физику, необходимы в сфере строительства, медицины, механики, автоматики и электроники, высоких технологий и во многих других областях.

Физик

Физик – ученый, чьи научные исследования в основном посвящены физике. Физики работают над широким кругом проблем, начиная от субатомных частиц и заканчивая поведением Вселенной.

Предметом профессиональной деятельности физика является область науки и техники, включающая совокупность средств, приемов, способов и методов для получения полной и достоверной информации о характере и количественных закономерностях протекания физических процессов в окружающем мире, существующих и новых технических системах для разных отраслей.

Физик занимается исследованием объектов окружающего мира и законов их взаимодействия. Объекты он рассматривает как физические тела, а их взаимодействие – как физические явления. Проводит физические исследования посредством эксперимента, занимается построением математических моделей физических явлений, описывает базовые свойства окружающего мира. Изучение физических явлений позволяет физикам открывать общие законы и использовать их в целях прогресса.

Для физика важны наблюдательность и любознательность, настойчивость и желание узнавать новое, терпение и критичность мышления, склонность к экспериментам, интерес к природе и способность к научному творчеству. Профессия требует от специалиста в основном интеллектуальных затрат. Деятельность связана с анализом, сравнением и интерпретацией данных, выработкой новых решений.

В рамках профессии «физик» существует множество специализаций.

Физик-ядерщик проводит научные исследования поставленных проблем в области ядерной физики. Предметами профессиональной деятельности физика-ядерщика являются ядерно-физические явления и процессы (ядерные реакции, радиоактивность, взаимодействие ядерного излучения с веществом, ядерная изомерия, ядерно-магнитный резонанс, взаимодействие нейтронов с ядрами, термоядерные реакции, управляемый термоядерный синтез и др.); радиоактивные вещества; приборы, механизмы и оборудование ядерно-энергетического комплекса. Физик-ядерщик разрабатывает, осуществляет и контролирует состояние производственно-технологического процесса на предприятиях ядерно-энергетического комплекса.

Биофизик – специалист по изучению биологических проблем, причина которых – физико-химические жизненные процессы.

Биофизика – область науки, которая изучает физические и физико-химические явления, которые происходят в живых организмах. Эта область науки связана с изучением различных биологических процессов или явлений при помощи лабораторных экспериментов и математических вычислений. Основная задача биофизика – изучение физических и химических процессов, способных вызвать биологическую проблему.

Биофизик изучает физические и физико-химические процессы в живых организмах на всех уровнях организации живой материи, а также тонкую структуру различных биологических систем. Биофизик занимается также изучением влияния на организм таких физических факторов, как вибрация, ускорение, невесомость, исследует биологическое действие ионизирующих излучений, осуществляет физический анализ деятельности органов чувств и анализ работы органов движения, дыхания, кровообращения как физических систем, решает вопросы прочности и эластичности тканей.

Инженер

Инженерная профессия всегда была основой мирового развития. Уровень технического оснащения еще до начала нашей эры определял превосходство одной цивилизации над другими. И сегодня именно технические новшества обеспечивают развитие цивилизации.

Сегодня инженерные профессии – самые многочисленные профессии высококвалифицированного труда. В нашей стране более трети специалистов с высшим образованием – инженеры. Инженер участвует в производстве всех материальных благ общества – от продуктов питания и товаров повседневного спроса до сложных вычислительных машин и космических ракет.

Современный инженер – это специалист, обладающий высокой культурой, хорошо знающий современную технику и технологию, экономику и организацию производства, умеющий пользоваться инженерными методами при решении инженерных задач и в то же время обладающий способностью изобретательства. Работа инженера – это связующее звено между научными открытиями, разработками и их практическим применением. Инженеры руководят производственными участками на промышленных предприятиях, в строительстве, сельском хозяйстве и других отраслях, работают в конструкторских бюро, лабораториях и научно-исследовательских учреждениях, занимаются вопросами организации производства, планирования и экономики. Они проектируют технологии, промышленное оборудование, машины, участвуют в проектировании и развитии систем контроля производства, автоматизации производства, бизнесе, процессах управления. Изучают причины ухудшения и сбоев производства, испытывают продукцию, определяя ее качество и т.д.

Для полноценной и качественной работы инженеру необходимы математические и технические способности; аналитический склад ума; концентрированность внимания; абстрактность мышления; склонность к исследовательской деятельности; навыки черчения.

Существует множество инженерных специальностей.

Инженер-энергетик – специалист с высшим техническим образованием в области разработки, производства или эксплуатации систем, предназначенных для теплового или электрического обеспечения. Его рабочие обязанности во многом определяются должностью и спецификой предприятия. В проектных и пусконаладочных предприятиях энергетики восстанавливают и проектируют электросети предприятий. На самих предприятиях энергетики обеспечивают бесперебойную работу системы, занимаются ее ремонтом, а также определяют технологический процесс работы с энергетическим оборудованием.

Инженер-конструктор – инженерная специальность, чья деятельность необходима для разработки и создания конечного (целевого) продукта из продуктов и ресурсов существующего материального производства. Он создает из имеющихся ресурсов новые объекты материальной культуры, организует и технически вооружает труд других людей.

Инженеры-конструкторы создают, проверяют и редактируют чертежи, рассчитывают проект конструкций, участвуют в согласовании и защите проекта, ведут технический и авторский надзор за его исполнением. В обязанности конструктора входит также испытание и наладка опытных изделий и деталей, которые планируется использовать в дальнейшем. Разрабатывает эскизные, технические и рабочие проекты и изделия различной сложности, организует технологические процессы изготовления деталей и сборки машин, проводит исследования в области конструирования, определяет показатели технического уровня проектируемых изделий, рассчитывает экономическую эффективность внедряемых проектов, составляет техническую документацию к разработанным конструкциям.

Инженер-механик – специалист с высшим техническим образованием в области проектирования, конструирования и эксплуатации технологического оборудования.

Инженер-механик проектирует, конструирует и эксплуатирует механическое оборудование, машины, устройства и аппараты, автоматические линии, средства и системы комплексной механизации и автоматизации производства, организует и проводит их монтаж, наладку, испытания. Он разрабатывает, планирует и организует технологические процессы, выбирает оптимальные условия их проведения. В его обязанности входит также планирование и проведение ремонта машин, составление технических заданий на реконструкцию действующих и создание новых установок. В сфере сельскохозяйственного производства инженер-механик руководит механизаторами, управляет всей механизацией сельского хозяйства.

Основная цель деятельности инженера-механика – проектирование механического оборудования и технологических процессов и организация обслуживания оборудования.

Инженер данной специальности – высококвалифицированный специалист, обладающий глубокими знаниями по теоретическим основам электротехники, теории автоматического регулирования, промышленной электронике и вычислительной технике.

Инженер-строитель работает в общестроительных и специализированных строительных, строительно-монтажных, пусконаладочных, эксплутационных, проектных, конструкторских и научных организациях.

Он осуществляет производственно-технологическую, организационно-управленческую, проектно-конструкторскую и исследовательскую деятельность в области строительства. Данные специалисты решают задачи, связанные с проектированием и строительством зданий и сооружений, систем и устройств водоснабжения и канализации, дорог и трубопроводов, линий электропередач и связи и других объектов.

В процессе своей профессиональной деятельности инженер-строитель рассчитывает, конструирует и разрабатывает строительные конструкции, фундаменты и основания, подземные части сооружений в различных грунтовых условиях. Разрабатывает и внедряет технологии изготовления и монтажа строительных конструкций, проекты организации строительства и производства строительных работ с применением комплексной механизации и передовых методов труда.

Инженер-строитель руководит строительными, монтажными и наладочными работами, контролирует их качество, осуществляет технический надзор за реализацией проектных решений и выполнением строительно-монтажных работ. Занимается нормированием труда и сметным делом в строительстве, инженерным обеспечением бригадного хозрасчета, составляет наряды и калькуляции затрат труда и заработной платы рабочих.

Инженер-металлург изучает и внедряет технологии производства различных металлов. В обязанности инженера-металлурга входит определение химического состава сплава, выбор подходящей температуры и времени обработки, контроль отливки и штамповки готового сплава, сварки нескольких готовых деталей. Он отвечает за проведение технологического процесса, предлагает новые технологии для удешевления готового продукта и сокращения энергозатрат.

Предметами профессиональной деятельности являются технологические процессы металлургической промышленности, переработки исходного сырья и производства металлопродукции повышенных потребительских свойств, технологии получения и обработки металлов и материалов, изучение структуры и свойств, оборудование горно-металлургического производства, системы автоматического управления металлургическим производством и контроля качества конечной продукции.

Инженер-технолог занят организацией производственных процессов или разработкой определенной технологии на производственных предприятиях. Он сам выбирает набор оборудования, на котором осуществляет технологический процесс, оптимальный режим работы, методы оценки результатов и контроля качества, ведет технологическую документацию. Инженер-технолог возглавляет рационализаторскую и изобретательскую работу предприятия по освоению производственных мощностей.

Инженер-технолог по сварке является специалистом в области технологии выполнения сварочных работ. Он руководит технологической подготовкой выполнения сварочных работ при изготовлении изделий; организовывает разработку и внедряет в производство прогрессивные методы сварки; контролирует соблюдение технологических режимов сварки, нормы расхода материалов.

Инженер-электрик способен выполнять любые работы по проектированию, монтажу, наладке, ремонту и модернизации линий электропередач и подстанций от низких до сверх- и ультравысоких напряжений, высокотехнологичному, безопасному и экономичному обслуживанию электрических сетей, тепловых и атомных станций с использованием новых прогрессивных технологий, оборудования и автоматизированных систем.

Горный инженер (маркшейдер) – специалист по проведению пространственно-геометрических измерений в недрах земли и на соответствующих участках ее поверхности с последующим отображением результатов измерений на планах, картах и разрезах при горных и геолого-разведочных работах.

Маркшейдер работает при разведке месторождений полезных ископаемых, на строящихся и действующих горных предприятиях, на строительстве подземных сооружений. Он занимается геодезическими измерениями и разметкой, и от их точности зависит качество работы проходчиков, строителей и т.д.

Горный инженер-механик – это специалист в области проектирования горно-перерабатывающих машин и механизмов, используемых на обогатительных и перерабатывающих производствах.

Данные специалисты занимаются проектированием, эксплуатацией и ремонтом горных машин и механизмов, используемых при разработке месторождений полезных ископаемых открытым и подземным способом.

Инженер-метролог занимается проверкой и регулировкой точности работы измерительных аппаратов и приспособлений. Главная цель его деятельности – приведение измерительных приборов в полное соответствие установленным стандартам. Метрологу необходимо разрабатывать поверочные схемы для различных видов измерений, инструкции, методики и прочую метрологическую документацию, а также проверять, ремонтировать и калибровать средства измерений. Он контролирует соответствие методов и средств измерений требованиям законодательства, проводит метрологическую экспертизу.

Инженер по стандартизации – это специалист в области обеспечения и оценки качества продукции, а также контроля за условиями эксплуатации технических средств (приборов, оборудования), закрепления в стандартах и нормативах правил для достижения экономии ресурсов при соблюдении безопасности производства.

Стандартизация – это целая наука, которая изучает, анализирует, обобщает и формулирует закономерности производственных процессов с целью достижения их оптимальной степени порядка.

Инженер по стандартизации контролирует техническую документацию, разрабатывает новые и пересматривает действующие стандарты, технические условия и другие документы по стандартизации и сертификации, работает над их внедрением на предприятиях. Изучает технический уровень продукции, особенности производства и результаты эксплуатации стандартизованных изделий и их отдельных элементов.

Радиоинженер занимается проектированием, разработкой и эксплуатацией специализированных радиоэлектронных устройств, контрольно-измерительных приборов для цифровых линий передачи информации, программно-технических средств организации каналов цифровой радиосвязи.

Радио и телевидение, компьютерная техника, приборы для научных исследований и медицины, системы мобильной радиосвязи – это далеко не полный перечень тех областей, где невозможно обойтись без радиоинженера. В них заинтересованы академические и отраслевые научно-исследовательские институты, вычислительные центры, проектные и конструкторские организации, производственные предприятия, прямо или косвенно связанные с радиоэлектронными приборами и аппаратами, вычислительной техникой, автоматизированными системами, программным обеспечением, различными приложениями.

Инженер-программист осуществляет деятельность в области проектирования, производства и эксплуатации программных средств на базе современных информационных технологий. Основной задачей инженера-программиста является разработка программ на основе анализа математических моделей и алгоритмов для решения научных, прикладных, экономических и других задач, обеспечивающих выполнение этих алгоритмов и задач средствами вычислительной техники.

В обязанности инженера-программиста входит разработка технологии, этапов и последовательности решения задач; выбор языка программирования и перевод на него используемых моделей и алгоритмов задач; определение информации для обработки на ЭВМ (ее объем, структура, макеты и схемы ввода, способ хранения и воспроизведения). Он занимается подготовкой программ к отладке и проведением отладки, проверкой программ на основе логического анализа, корректировкой их в процессе доработки. Осуществляет сопровождение внедренных программ и программных средств. Разрабатывает инструкции по работе с программами, оформляет необходимую техническую документацию.

Учитель физики

Учитель физики осуществляет обучение и воспитание обучающихся с учетом специфики преподавания учебного предмета «физика». Проводит уроки, дополнительные факультативные занятия, руководит предметными кружками. Составляет тематический план работы по предмету, обеспечивает выполнение учебной программы. Участвует в методической работе, использует наиболее эффективные формы, методы и средства обучения. Анализирует успеваемость учащихся, обеспечивает соблюдение учебной дисциплины. Формирует умения и навыки самостоятельной работы школьников, стимулирует их познавательную активность и учебную мотивацию. Добивается прочного и глубокого усвоения знаний по предмету, умения применять знания на практике. Оснащает и оформляет учебный кабинет. Изучает и учитывает в работе индивидуальные особенности учащихся, участвует в работе с родителями.

Физика считается одним из самых сложных предметов школьной программы, так как это динамично меняющаяся научная область. Поэтому учителю физики необходимо следить за всеми новостями в мире науки, знакомиться с новыми открытиями, техническими достижениями и изобретениями.

Основная задача учителя физики – научить детей понимать окружающий их мир, процессы, которые происходят вокруг них в повседневной жизни.

Описание работы

История физики тесно связана с историей общества. Это вполне естественно, поскольку физика как любая наука является важной составляющей культуры, а научное развитие, безусловно, определяется развитием цивилизации в целом. Причем физика в большой степени и зависит от уровня развития, и обусловливает развитие производительных сил общества. В связи с этим развитие физики определяется развитием, как материальной культуры, так и общей, духовной культуры. Отметим, что духовная культура должна пониматься в самом широком смысле, т.е. включать в себя образование, идеологию, государственное устройство.
Экономика предприятия – образовательная и научная дисциплина, в которой излагаются методы и правила хозяйственной деятельности производственной организации.

Файлы: 1 файл

Министерство образования РФ

Федеральное агентство по образованию

Иркутский государственный технический университет

Кафедра физики

Реферат

«Роль физики в моей профессии»

Выполнила: ст-ка гр. ЭУП-09-1 Домнина Д. Р.

Проверил: д.т.н., профессор

Коновалов Н.П.

Иркутск, 2010

ВВЕДЕНИЕ

История физики тесно связана с историей общества. Это вполне естественно, поскольку физика как любая наука является важной составляющей культуры, а научное развитие, безусловно, определяется развитием цивилизации в целом. Причем физика в большой степени и зависит от уровня развития, и обусловливает развитие производительных сил общества. В связи с этим развитие физики определяется развитием, как материальной культуры, так и общей, духовной культуры. Отметим, что духовная культура должна пониматься в самом широком смысле, т.е. включать в себя образование, идеологию, государственное устройство.

Экономика предприятия – образовательная и научная дисциплина, в которой излагаются методы и правила хозяйственной деятельности производственной организации.

Основная задача, которую решает управленческий персонал предприятий, заключается в том, чтобы каждый вложенный в производство рубль не только окупался в полном объеме, но и приносил дополнительный доход. Профессиональный экономист как основное лицо в структуре хозяйственного управления в достаточной мере должен обладать знаниями о реальных процессах и механизмах производства и обращения товаров, позволяющими избегать ошибок и гарантировать успех дела.

  1. ВЗАИМОСВЯЗЬ РАЗВИТИЯ ФИЗИКИ И КУЛЬТУРЫ

Связь физики с развитием общества прослеживается на протяжении всей истории развития цивилизации. Эта связь не всегда носит однозначный характер, что обусловлено, прежде всего, естественным отставанием реализации тех или иных возможностей от потребностей общества. С другой стороны, на определенных стадиях физика как мощная ветвь дерева цивилизации начинает развиваться уже по своим собственным законам, слабо связанным с развитием общества в целом.

По мере развития материального производства в древнем мире идет накопление знаний в области естествознания. Но в древнем Египте, Месопотамии, Индии и Китае эти знания не были систематизированы. Для развития физики, безусловно, важным является и уровень духовной культуры общества, который необходим для обобщения данных наблюдений, появления новых физических идей и представлений, создания стройной системы знаний. Особенно отчетливо это просматривается в истории физики античного мира.

Определенные ценные знания по отдельным вопросам естествознания были у шумеров, вавилонян и египтян, но они носили случайный характер. И только после появления "чистых наук" - философии и математики в Древней Греции стали возможны систематические работы по описанию и объяснению явлений природы. При этом естественно использовались экспериментальные наблюдения, накопленные в процессе развития материальной культуры. Достижение высокого общего культурного уровня в Греции при наличии обширного комплекса знаний и технических навыков обеспечило в 4 веке до н.э. начало работ по описанию, упорядочению и объяснению явлений природы. Поэтому именно в это время у Аристотеля в его натурфилософских работах появляется само понятие "физика" и закладываются основы физического мышления. Подход Архимеда и других древнегреческих ученых к решению физических проблем основывался на простых, но строгих геометрических доказательствах, так что математика стала основным интеллектуальным орудием физики.

Следует отметить, что достижения александрийских механиков 2-1 веков до н.э. позволяли создавать очень нужные и полезные технические устройства. Но отсутствие соответствующей производственной базы задержало реализацию этих изобретений до 2-4 веков, когда они частично использовались при интенсивном строительстве в Римской империи, а внедрение подавляющего большинства изобретений затянулось до эпохи Возрождения.

После распада Римской империи в Европе наблюдается экономический упадок. Это определило то, что в средневековье там практически не наблюдалось развитие физики. Важным фактором, определившим развитие науки, явилось появление новых религий: христианства и ислама.

Возникающие новые господствующие идеологии очень ревниво и враждебно относились к культурному наследию прошлого, философии и естественнонаучным трудам. В конце 4 века под руководством александрийского архиепископа Феофила был организован разгром части Александрийской библиотеки, а в начале 5 века по указанию патриарха Кирилла был осуществлен разгром Александрийского музея, а также убиты многие его профессора. В 529 г. император Византии Юстиниан закрыл последнюю философскую школу в Афинах, а римский папа Григорий I специальным постановлением запретил чтение древних книг и занятие математикой и философией. Арабам же приписывают окончательное сожжение Александрийской библиотеки в 640 г.

По мере усиления и расцвета арабских государств ислам становится более терпимым, начинается ассимиляция культур и в арабском мире наблюдается развитие науки, поэтому достижения средневековой физики в основном связывают с арабскими учеными. При этом следует говорить об изменении отношения именно государств, а не религии, поскольку последняя крайне нетерпима к развитию науки, получению новых объективных знаний. Для ортодоксальных религиозных идеологий главным является беспрекословное следование догмам, послушание, а не результат, и религия на протяжении практически всей истории негативно относилась к развитию физики и естествознания в целом.

В связи с этим в средневековой Европе, где католическая церковь имела огромную власть, даже после создания университетов развитие науки в них носит сугубо схоластический характер. И лишь после начала эпохи Ренессанса, возрождения как материальной, так и духовной культуры наблюдается отказ от схоластического мышления в науке и появляются основоположники экспериментального метода в физике - Леонардо да Винчи и Галилео Галилей. Происходящая в это время промышленная революция, применение машин в мануфактурном производстве ставит новые проблемы перед физикой. Достижения античной статики уже практически исчерпаны, и в отличие от техники древности, где в основном использовалась наука о равновесии, в технике мануфактурного периода вперед выходит задача освоения и передачи механического движения. Такие задачи в полной мере решает созданная в 17-18 веках классическая механика.

Промышленная революция в 19 веке дополнительно стимулировала развитие физики. При этом, прежде всего, следует отметить влияние практического использования паровой машины и потребности ее совершенствования на развитие термодинамики. А успехи учения о теплоте в свою очередь способствовали развитию теплотехники во второй половине 19 века, поскольку конструкторы новых тепловых машин - двигателей внутреннего сгорания опирались на теоретические положения термодинамики.

Также необходимо сказать о бурном развитии электротехники в 19 веке, где широко и активно использовались открытия Вольта, Ампера, Фарадея и других физиков в области электромагнетизма. При этом следует подчеркнуть, что пути и сроки реализации технических применений различных физических открытий могут быть разными, поскольку развитие техники происходит по своим внутренним законам. Например, применения электричества для передачи сигналов на расстояния предлагали Вольта, Ампер и другие исследователи. Но реализация телеграфа стала возможна лишь после удачного предложения в 1832 г. телеграфного алфавита американским изобретателем Самуилом Морзе (1791-1872).

После завершения построения классической физики развитие современной физики в большей степени происходило по объективным законам собственной логики. Так, и теория относительности, и квантовая физика возникли вследствие необходимости преодоления внутренних противоречий в физике, которые не могли быть разрешены в рамках классической теории. И теперь уже достижения квантовой и ядерной физики в 20 веке стимулировали развитие техники и обеспечили полномасштабную научно-техническую революцию в материальном производстве.

Влияние развития культуры на физику также не носило односторонний характер. Помимо влияния физики на промышленную и научно-техническую революции 19 и 20 веков, физика активно и глубоко проникала и в процессы духовного формирования общества. Это, прежде всего, развитие во многом определяющих современную духовную культуру средств связи и массовой информации, появление которых было бы невозможно без достижений физики. А успехи атомной и ядерной физики 20 века в огромной степени обусловили изменение сознания общества в различных направлениях, начиная с политики и кончая экологией.

Необходимо отметить еще один аспект связи физики и общества: влияние государственного устройства на развития физики, что наиболее наглядно проявилось в 20 веке. В основном успехи физики определялись достижениями ученых в демократических государствах, а тоталитарные режимы вынуждали, как правило, эмигрировать представителей научной элиты (Россия, Италия, Германия). Но эта связь не является однозначной, поскольку в тоталитарных государствах на решении ряда научно-технических проблем (в особенности по вопросам совершенствования военной техники) сосредотачивались огромные материальные и людские ресурсы. Причем очень большое внимание уделялось развитию физического образования в массовом масштабе. А уже по закону больших чисел здесь всегда находились ученые, которые успешно занимались не только задачами прикладного характера, но и делали фундаментальные открытия.

2. РАЗВИТИЕ ОРГАНИЗАЦИИ НАУЧНЫХ ИССЛЕДОВАНИЙ

Зарождение физики и первые ее успехи в определяющей степени связаны с тем, что в античном мире были созданы первые научные и образовательные центры: аристотелевский Ликей и Александрийский музей. Оба эти заведения организовывались и существовали при всесторонней поддержке тогдашних государственных руководителей: Александра Македонского и правителей династии Птолемеев. Такая поддержка подразумевала полное государственное обеспечение и создавала необходимые условия для развития творчества. В арабском мире, как и в элиннскую эпоху, основные естественнонаучные исследования сосредотачивались в придворных школах.

С появлением университетов в средневековой Европе научная деятельность начинает концентрироваться там, а также продолжаются исследования ученых при дворах феодальных правителей. Понятия ученый и профессор университета, как правило, совпадали. При этом основной обязанностью профессора университета было обучение, а научная деятельность проводилась исключительно по личной инициативе при практической свободе творчества.

Важным моментом, определившим развитие и распространение науки, является создание научных академий.

В 1560 г. Порта организовал в Италии первую академию - Академию тайн природы. Но это не была настоящая академия с соответствующими органами и статутом, а скорее периодические собрания в доме Порты.

В 1603 г. в Риме состоялось первое заседание Академии Деи Линчей целью, которой было изучение и распространение научных знаний. С 1611 г. членом Академии был Галилей. До 1630 г. Академия процветала, публиковала важные научные работы, выступала с открытой защитой учения Галилея. Но после смерти одного из активнейших организаторов Академии Федерико Чези (1585-1630) деятельность ее практически прекратилась. Уже в 18 веке и позже в постоянной борьбе с церковью неоднократно предпринимались попытки воссоздания и преобразования Академии. В итоге в 1939 г. она слилась с распущенной Итальянской академией, а в 1944 г. преобразована в Национальную академию Деи Линчей.

Вернувшись в 1644 г. из Италии в Англию Бойль стал инициатором объединения ученых-исследователей. С 1645 г. в Лондоне и Оксфорде начала действовать "невидимая коллегия", которая в 1660 г. была официально преобразована в "Королевское общество для развития познания". Это общество и по сей день играет роль Английской Академии наук. По примеру "Королевского общества" в 1663 г. в Париже была основана "Академия точных наук".

И Королевское общество, и Парижская академия были созданы по образцу Академии опытов, основанной в 1657 г. князем Леопольде Медичи. Подобно Академии Деи Линчей она организовывалась для пропаганды науки и должна была расширять физические знания путем коллективной экспериментальной деятельности своих членов по методу Галилея. Она имела в своем составе действительных членов, а также итальянских и иностранных членов-корреспондентов. Академия опытов публиковала результаты своей деятельности: в 1667 г. вышла работа ученого секретаря Магалотти "Очерки о естественнонаучной деятельности Академии опытов", а в 1680 г. во Флоренции Джованни Тарджони Тодзетти были опубликованы в четырех томах "Труды и неизданные отчеты Академии опытов". В Академии опытов были получены важные результаты: улучшен термоскоп Галилея и создан спиртовой термометр, исследовано расширение тел при нагревании, начаты систематические метеорологические наблюдения, проведены исследования движения тел в пустоте и в воздухе, электрических явлений, звука, цвета и др.

Цели нашего занятия: Учебная: показать роль физики в современных рабочих профессиях; Воспитывающая: воспитать целеустремлённость, самостоятельность, внимательность Развивающая: развить познавательные и творческие способности к самообучению Оборудование: компьютер: презентация: «Физика в твоей профессии» (среда Power Point, Paint, Word), видеофрагменты, анимации 2






Автослесарь Скоростные ограничения на местности; подъём, спуск Разделка, сращивание, пайка и изоляция проводов Составные части рабочих механизмов Возможные места работы: промышленные, строительные, транспортные предприятия, жилищно-коммунального хозяйства, ремонтные мастерские. 5




Подъём большегрузного автомобиля 1. Какое физическое понятие приводит к поднятию автомобиля? А. Диффузия твёрдого вещества; Б. Инерция – движение не поддерживаемое никакими телами; В. Гравитация; Г. Смещение центра масс. 2. Какая сила препятствует движению автомобиля? А. Сила трения; Б. Сила упругости; В. Сила Архимеда; Г. Сила Гука. 7




Деревообрабатывающие станки 1. Охарактеризуйте принцип работы станка, его составные детали 2. Какое физическое явление характеризует движение детали инструмента? 3. Движущая часть станка резко останавливается. Что будет происходить? 4. Что необходимо учитывать при работе с инструментом? 9




Электрик 1. Почему необходимо изолировать провода от влаги? 2. От чего зависит электропроводимость электрического провода? 4. Будет ли работать лампочка, в которой находится вода? Почему? 3. Какие приборы необходимы электрику? 5. Для чего у электроустановок устанавливается «заземление»? 6. Каким образом устанавливают опоры ЛЭП? Возможные места работы: промышленные предприятия, ремонтные мастерские 11




Маляр-штукатур Смешивание красителей, окраска поверхностей, высыхание окрашенных поверхностей 1. Поверхность фасада должна чистой, не осыпающейся и не «мелящей", сухой, без признаков грибковых поражений. 2. Перед применением краску тщательно перемешать и при необходимости разбавить водой до рабочей вязкости. 3. Почему краска сохнет лучше быстрее в тёплом помещении, чем в холодном? 4. Почему грязная поверхность мешает наложению краски на поверхность? 13




Сварка Определяющее качество газового паяльника - портативность, возможность работы вдали от электросети, в труднодоступных местах и полевых условиях. Подобно 220-вольтовым собратьям, газовые паяльники характеризуются разной мощностью для различного рода работ, а маломощный газовый паяльник может использоваться еще и как альтернатива портативному паяльнику с батарейным питанием. Спектр газовых паяльн иков ERSA представлен ниже. Возможные места работы: строительные организации, промышленные и жилищно-коммунальные предприятия. Может заниматься индивидуальной деятельностью. 15





Презентация на тему: Физика в профессии «программист в компьютерных системах»

БОУ ОО СПО «Омский авиационный колледж им. Н. Е Жуковского

Выполнили: студенты гр. Пр-52п Грыцай Вероника, Ионов Владислав, Жежера Сергей, Андреев Дмитрий

Проверила: Боровец Нина Ивановна

1. Зачем нужна физика?........... .............................. ........3

2. Чем важна физика для программиста?............. ........4

3. Зачем программисту изучать физику?............... .......5

4. Цифровая физика……………………………………… ………6

5. Все из бита «it from bit»……………………………………….7

6. А чем же физика важна для всех остальных?..... ......8

Зачем нужна физика?

Физика - это наука о природе. Она изучает вещество, материю, энергию и взаимодействие природы с окружающим миром.
Эта наука описала многие принципы которые существуют в нашем мире, многие ещё остались под вопросом. Почти всё, что нас окружает в той или иной степени связано с физикой, здания, машины, компьютеры и т.д.
Этот список может быть очень большим. Как наука физика помогает развивать аналитическое мышление и логически мыслить.

Чем важна физика для программиста?

Основой любой системы есть ее материальная модель, в последнее время мат. модели применяются во всем: в биологии, медицине, социологии, психиатрии, астрономии, агрономии и т.д. Физика это своеобразная математическая модель вселенной. Принципиальным разногласием физики и математики можно считать то, что математика не считает возможным отбрасывать ни одного случая, она не терпит грубых приближений, физика же снисходительна к мелким погрешностям. Физика учит нас рассматривать сложные процессы как совокупность мелких факторов, находить взаимосвязи, способы описания новых явлений доступными нам методами. Я считаю что без этих навыков не существует программиста, существует лишь человек который может писать код.

Зачем программисту изучать физику?

    • Работа, связанная с физикой
    • Будущая работа программиста может быть связана с физикой напрямую. Допустим, в ваши задачи будет входить создание симулятора корабля, интерпретация данных, полученных от медицинского оборудования, или же разработка реалистичных компьютерных игр.

Цифровая физика

Цифровая физика предполагает, что существует - по крайней мере, в принципе - программа, которая вычисляет в реальном времени эволюцию Вселенной.

Все из бита («it from bit»)

    • Иными словами, все сущее - каждая частица, каждое силовое поле, даже сам пространственно-временной континуум - получает свою функцию, свой смысл и, в конечном счёте, самое своё существование - даже если в каких-то ситуациях не напрямую - из ответов, извлекаемых нами с помощью физических приборов, на вопросы, предполагающие ответ «да» или «нет», из бинарных альтернатив, из битов.

А чем же физика важна для всех остальных?

Знание законов физики облегчает нашу жизнь. Чаще всего мы не задумываемся о причинах, предпочитая рассматривать следствия, но сталкиваясь с новым для нас явлением мы теряемся, мы не знаем что делать, и здесь для нас оказалась бы очень кстати знания. Кроме того физика бесконечно интересна. Ведь она открывает ту гармонию, которая существует в нашем мире.

Без математики нет физики.Математика это вовсе не царица наук, а скорее язык науки, ведь без царицы жить можно, а без языка очень сложно.

Спасибо за внимание!