Автоматизированный электропривод курс лекций. Конспект лекций по дисциплине «Автоматизированный электропривод. Классификация систем управления АЭП

S=UI
P=Mω
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Введение

1.1.Определение понятия «Электрический
привод»
Электропривод
это управляемая электромеханическая
система. Ее назначение преобразовывать электрическую энергию
в механическую и обратно и управлять этим процессом.
Электропривод имеет два канала силовой и информационный
(рисунок
1.1).
По
первому
каналу
транспортируется
преобразуемая
энергия, по второму каналу осуществляется
управление потоком энергии, а также сбор и обработка сведений о
состоянии и функционировании системы, диагностика ее
неисправностей.
Силовой канал состоит из двух частей
электрической и
механической и обязательно содержит
связующее звено
электромеханический преобразователь.
Н.И. Усенков. Электриче
ский привод

Рисунок 1.1. Общая структура электропривода

АСУ верхнего уровня
Каналы связи
ИП
Сеть
ЭП
канал
электропривода
ЭМП
МП
Рабочий
орган
Электрическая часть
Механическая часть
Силовой канал электропривода
Н.И. Усенков. Электриче
ский привод
Технологическая установка
Система
электроснабжения
Информационный

В электрическую часть силового канала электропривода
входят электрические преобразователи ЭП, передающие
электрическую энергию от источника питания ИП к
электромеханическому преобразователю ЭМП и обратно и
осуществляющие преобразование параметров электрической
энергии.
Механическая
часть
электропривода
состоит
из
подвижного органа электромеханического преобразователя,
механических передач МП и рабочего органа установки, в
котором полезно реализуется механическая энергия.
Электропривод
взаимодействует
с
системой
электроснабжения (или источником электрической энергии),
технологической установкой и через информационный
преобразователь ИП с информационной системой более
высокого уровня.
Электрический
привод
используется
в

хозяйстве.
Широкое
распространение
электропривода
Н.И. Усенков. Электриче
обусловлено
особенностями
электрической
энергии:
ский привод

Электрический привод один из самых энергоемких
потребителей и преобразователей энергии. Он потребляет
более 60% всей производимой электроэнергии.
Электрический
привод
широко
используется
в
промышленности, на транспорте и в коммунальном
хозяйстве.
Электрический
привод
один
из
самых
энергоемких потребителей и преобразователей энергии.
Теория
регулируемого
электропривода
получила
интенсивное развитие благодаря
усовершенствования
традиционных и созданию новых силовых управляемых
полупроводниковых приборов (диодов, транзисторов и
тиристоров), интегральных схем, развитию цифровых
информационных технологий и разработке разнообразных
систем микропроцессорного управления.
Владение
теорией
в
области
регулируемого
электропривода
является
одной
из
важнейших
составляющей профессиональной подготовки специалистов
Н.И. Усенков. Электриче
направления «Электротехника,
энергетика и технология
ский привод

1.2. Состав и функции электропривода

Функция
электрического
преобразователя
ЭП
состоит
в
преобразовании электрической энергии, поставляемой сетью С и
характеризуемой напряжением Uс и током Iс сети, в электрическую
же энергию, требуемую двигателем и характеризуемую величинами
U, I.
Преобразователи бывают неуправляемыми и управляемыми. Они
могут иметь одностороннюю (выпрямители) или двухсторонюю (при
наличии
двух
комплектов
вентилей)
проводимость,
При
односторонней проводимости преобразователя и обратном (от
нагрузки) потоке энергии используется дополнительный ключевой
элемент на транзисторе для «слива» энергии в тормозном режиме
электропривода.
Электромеханический преобразователь ЭМП (двигатель), всегда
присутствующий в электроприводе, преобразует электрическую
энергию (U, I) в механическую (M,ω).
Механический преобразователь МП (передача): редуктор, пара
винтгайка, система Н.И.
блоков,
Усенков.кривошипно
Электриче шатунный механизм
осуществляют согласование
момента М и скорости ω двигателя с
ский привод

Рисунок 1.2. Энергетический канал электропривода
P2
P1
Сеть
ΔPс
ΔPэ
Uс, I с
ΔPr
ΔPм
ΔPэм
U, I
Mм, ω м
M, ω
ЭМП
ЭП
Δ Pро
МП
ΔPr
Н.И. Усенков. Электриче
ский привод
РО

Величины,
характеризующие
преобразуемую
энергию:
напряжения, токи моменты (силы) скорости положение вала в
пространстве, называют координатами электропривода.
Основная функция электропривода состоит в управлении
координатами, то есть в их принудительном направленном
изменении в соответствии с требованиями технологического
процесса.
Управление координатами должно осуществляться в пределах,
разрешенных
конструкций
элементов
электропривода,
чем
обеспечивается надежность работы системы. Эти допустимые
пределы обычно связаны с номинальными значениями координат,
обеспечивающими оптимальное использования оборудования.
Н.И. Усенков. Электриче
ский привод

Автоматизированный
электропривод
(АЭП)
это
электромеханическая система, состоящая из электрической
машины ЭМ, связанной посредством механической передачи
ПУ с рабочим механизмом РМ, силового преобразователя СП,
системы управления СУ, блока сенсорных устройств БСУ,
которые выполняют роль датчиков обратной связи по
основным
переменным
состояния
ЭП
(параметры:
положения вала рабочей машины, угловая скорость, момент,
ток двигателя) и источников питания, обеспечивающих
питание указанных электротехнических устройств.
Полупроводниковые
СП
служат
для
согласования
электрических
параметров
источника
электрической
энергии
(напряжение,
частота)
с
электрическими
параметрами машины ЭМ и регулирование ее параметров
(скорость, напряжение и изменение направления вращения
Н.И. Усенков. Электриче
ский привод

Рисунок 1.3. Блок схема автоматизированного
электропривода
Источник питания
Сигнал
задания
ЭМ
СУ
СП
БСУ
ПУ
РМ
Информационный канал ЭП
Электрическая часть ЭП
Н.И. Усенков. Электриче
ский привод
Механическая часть ЭП

Система управления предназначена для управления
силовым преобразователем и строится, как правило, на
микросхемах, либо микропроцессоре. На вход системы
управления
подается
сигнал
задания
и
сигналы
отрицательных обратных связей от блока сенсорных
устройств.
Система
управления,
в
соответствии
с
заложенными в нее алгоритмом, вырабатывает сигналы
управления силовым преобразователем, управляющего
электрической машиной.
Наиболее
совершенным
электроприводом
является
автоматизированный
электропривод
регулируемый
электропривод
с
автоматическим
регулированием
переменных состояния.
Н.И. Усенков. Электриче
ский привод

Автоматизированный электропривод делится на:
Стабилизированный по скорости или моменту ЭП;
Программно управляемый ЭП, осуществляющий перемещение
рабочего механизма в соответствии с программой, заложенной в сигнал
задания;
Следящий ЭП, осуществляющий перемещение рабочего механизма в
соответствии с произвольно изменяющимся входным сигналом
Позиционный
ЭП,
предназначенный
регулирования положения рабочего механизма
Н.И. Усенков. Электриче
ский привод
для

Н.И. Усенков. Электриче
ский привод

Электропривод на основе двигателей постоянного
тока
используется
в
различных
отраслях
промышленности:
металлургии,
машиностроении,
химической, угольной, деревообрабатывающей и др.
Регулирование
угловой
скорости
двигателей
постоянного
тока
занимает
важное
место
в
автоматизированном электроприводе. Применение с
этой целью тиристорных преобразователей является
одним из современных путей создания регулируемого
электропривода постоянного тока.
Н.И. Усенков. Электриче
ский привод

Управление скоростью ДПТ с НВ осуществляется тремя
способами:
1.Изменением напряжения на якоре двигателя при неизменном токе в обмотке
возбуждения;
2.Изменением тока в обмотке возбуждения двигателя при неизменном
напряжении на якоре;
3.Комбинированным изменением напряжения на якоре двигателя
обмотке возбуждения.
и тока в
Напряжение на якоре двигателя или ток в обмотке возбуждения изменяют с
помощью управляемых выпрямителей, из которых наибольшее применение
получили однофазные и трехфазные мостовые выпрямители.
При управлении двигателем по цепи обмотки возбуждения управляемый
выпрямитель выполняется на меньшую мощность и обладает лучшими массогабаритными и стоимостными показателями.
Н.И. Усенков. Электриче
ский привод

Однако вследствие большой постоянной времени
обмотки возбуждения электропривод обладает худшими
динамическими
свойствами
(является
менее
быстродействующим), чем по цепи якоря двигателя. Таким
образом,
выбор
цепи
управления
определяется
конкретными требованиями к приводу.
При работе с производственными механизмами
(например, механизмы главной и вспомогательной
передач в обрабатывающих станках, крановые механизмы,
лифты) необходимо изменять направление вращения
двигателя
(осуществлять
реверс).
Изменению
направления вращения обычно сопутствуют такие
требования, как быстрое (и в то же время плавное)
торможение и плавный набор скорости.
Н.И. Усенков. Электриче
ский привод

Реверс направления вращения приводного двигателя может достигаться
изменением полярности подводимого к якорю напряжения либо изменением
направления тока в обмотке возбуждения. С этой целью в цепь якоря или
обмотки возбуждения вводят контактный переключатель (реверсор) или
используют два управляемых тиристорных преобразователя.
Структурная схема реверсивного тиристорного преобразователя с
контактным переключателем в цепи обмотки якоря показана на рисунке. В
этой схеме, как и в большинстве преобразователей, предназначенных для
электропривода, режим выпрямления чередуется с режимом инвертирования.
Так, например, при наборе скорости в режиме пуска и ее стабилизации в
условиях
повышения
нагрузки
на
валу
двигателя
тиристорный
преобразователь работает в режиме выпрямления, сообщая энергию
двигателю. При необходимости торможения и последующего останова
двигателя поступление энергии к нему от сети через преобразователь
прекращают,
Н.И. Усенков. Электриче
ский привод

Переводя
двигатель в режим инвертирования.
Машина постоянного тока под действием инерционной
массы на ее валу переходит в режим генератора,
возвращая накопленную энергию через преобразователь
в сеть переменного тока (рекуперативное торможение).
Блок-схема реверсивного преобразователя
Сеть
380 B, 50 Гц
Uсинхр
VS1
UZ1
VS6
СИФУ
Uо.с
1
Id1
2
QS1
Udα
1
2
Id2
M1
LM1
Н.И. Усенков. Электриче
ский привод
Uз.с

Н.И. Усенков. Электриче
ский привод

Система «Тиристорный преобразователь-двигатель»

Основным типом преобразователей, применяемых в регулируемых
ЭП постоянного тока, являются полупроводниковые статические
преобразователи (транзисторные и тиристорные). Они представляют
собой управляемые реверсивные или нереверсивные выпрямители,
собранные по нулевой или мостовой однофазной или трехфазной
схемам. Силовые транзисторы, применяются в основном для
импульсного регулирования напряжения в ЭП небольшой мощности.
Принцип действия, свойства и характеристики системы ТП - Д
рассмотрим на примере схемы, приведенной на рис. 2.
Н.И. Усенков. Электриче
ский привод

à)
á)
~ U1
i1
T1
e2.1
VS1
Ud
+
M2
+
Ia1
Id
UÓ1

2
e2.2
LM
3
VS2
I
0
L
1
Ia2
4
5
6
UÓ2
Ñ È Ô Ó

Рисунок
2
Н.И. Усенков.
Электриче
ский привод
7
M

Управляемый выпрямитель (преобразователь) включает в себя
согласующий трансформатор Т, имеющий две вторичные обмотки,
два тиристора VS1 и VS2, сглаживающий реактор с
индуктивностью L и систему импульсно-фазового управления
СИФУ. Обмотка возбуждения двигателя ОВМ питается от своего
источника.
Выпрямитель обеспечивает регулирование напряжения на
двигателе за счет изменения среднего значения своей ЭДС ЕП. Это
достигается с помощью СИФУ, которая по сигналу UУ изменяет
угол управления тиристорами α (угол задержки открытия
тиристоров VS1 и VS2 относительно момента, когда потенциал на
их анодах становится положительным по сравнению с
потенциалом на катоде). Когда α = 0, т.е. тиристоры VS1 и VS2
получают импульсы управления Uα от СИФУ в указанный момент,
преобразователь осуществляет двухполупериодное выпрямление
и на якорь двигателя подается полное напряжение. Если с
помощью СИФУ подача импульсов управления на тиристоры VS1 и
VS2 происходит со сдвигом (задержкой) на угол α ≠ 0, то ЭДС
преобразователя снижается, а следовательно, уменьшается
среднее напряжение, подводимое к двигателю.
Н.И. Усенков. Электриче
ский привод

Зависимость среднего значения ЭДС многофазного преобразователя
от угла управления тиристорами а имеет вид:
(1)
ECP Emax m sin m cos ECP 0 cos
где m - число фаз;
Е - амплитудное значение ЭДС преобразователя;
ЕСР0 - ЭДС преобразователя при α = 0.
Для уменьшения вредного влияния пульсации тока в цель якоря
обычно включается сглаживающий реактор, индуктивность L которого
выбирается в зависимости от допустимого уровня пульсации тока.
Уравнения для электромеханической и механической характеристик
двигателя:
(2)
(3)
ECP 0 cos k I RЯ RП k
ECP 0 cos
k M RЯ

k 2
где
- эквивалентное сопротивление
RП xT m 2 RT RL
преобразователя;
xT, RT - соответственно приведенные ко вторичной обмотке
индуктивное сопротивление рассеяния и активное сопротивление
обмоток трансформатора;
RL - активное сопротивление сглаживающего реактора.
Н.И. Усенков. Электриче
ский привод

В заштрихованной области двигатель работает в режиме
прерывистого тока, что определяет заметное изменение (уменьшение)
жесткости характеристик. Вследствие односторонней проводимости
преобразователя характеристики располагаются только в первом
(1 ...3 при α = 0; 30, 60°) и четвертом (4...7 при α = 90, 120, 150, 180°)
квадрантах. Меньшим углам управления соответствует большая ЕП и,
следовательно, более высокая скорость двигателя; при α = π/2 ЭДС
УВ ЕП = 0 и двигатель работает в режиме динамического торможения.
На рис. 3 приведена схема ЭП с трехфазным мостовым
нереверсивным УB.
Н.И. Усенков. Электриче
ский привод

~ 380 Â; 50 Ãö
T1


Ñ
È
Ô
Ó
U
VS1
+
VS6
VS1
VS4
VS3
VS6
VS5
VS2
Ud
L
Id
M1
+
LM
-
UB
Н.И. Усенков.
Электриче
Рисунок
3
ский привод
-

Для получения характеристик двигателя во всех четырех
квадрантах используются реверсивные управляемые выпрямители,
которые состоят из двух нереверсивных выпрямителей, например с
нулевым выводом рис. 4.
а)
~ 380 В; 50 Гц
б)
T1
2

U

С
И
Ф
У
VS1
+
VS6
VS1
VS4
VS3
VS6
VS5
VS2
L1
-
2
L
1 min
0
min
M
1 2
1 max
M1
UB
2 2
L2
+
max
-
Н.И. Усенков.
Электриче
Рисунок
4
ский привод

Реверсивными
называются
преобразователи,
позволяющие
изменять полярность постоянного напряжения и тока в нагрузке.
В реверсивных УВ используются два основных принципа
управления комплектами вентилей: совместное и раздельное.
Совместное управление предусматривает подачу от системы
импульсно-фазового управления тиристорами импульсов управления
Uα одновременно на тиристоры обоих комплектов – VS1, VS3, VS5
(катодная группа) и VS2, VS4, VS6 (анодная группа). При этом за счет
наличия угла сдвига между импульсами управления двух комплектов
тиристоров, близкого к π, один из них работает в выпрямительном
режиме и проводит ток, а другой, работая в инверторном режиме, ток
не проводит. Для обеспечения такого управления между средними
значениями ЭДС выпрямителя и инвертора должно существовать
соотношение
, однако за счет разности мгновенных значений
ЭДС между комплектами тиристоров протекает так называемый
уравнительный ток. Для его ограничения в схеме, приведенной на рис.
4, а, предусмотрены уравнительные реакторы L1 и L2.
Н.И. Усенков. Электриче
ский привод

Схемы вентильных преобразователей,
обеспечивающие изменение направления
потока энергии
В автоматизированных электроприводах
регулировать скорость приводного двигателя.
требуется
При использовании машин постоянного тока возникает
задача не только регулирования скорости вращения, (за
счет изменения величины питающего напряжения), но и
изменения направления вращения (реверс). Для этого
необходимо изменение как полярности напряжения на
нагрузке, так и направления тока в нагрузке.
Эта задача решается с помощью специального
преобразователя постоянного тока без применения
контактной аппаратуры,
так называемого реверсивного
Н.И. Усенков. Электриче
преобразователя постоянного
тока, состоящего
ский привод

состоящего из двух комплектов вентилей, каждый из которых
обеспечивает протекание тока через нагрузку только в одном
направлении.
Все существующие схемы реверсивных вентильных преобразователей
можно разделить на два класса:
перекрестные («восьмерочные») схемы и
встречно –параллельные схемы.
В перекрестных схемах (рисунок а – нулевая и б – мостовая)
трансформатор имеет две группы изолированных вентильных обмоток,
от которых питаются два комплекта вентилей.
Во встречно-параллельных схемах (рисунок в) необходима лишь одна
группа вентильных обмоток трансформатора.
В реверсивных
являются:
преобразователях
наиболее
трехфазная нулевая;
дважды трехфазная с уравнительным
реактором и
Н.И. Усенков. Электриче
ский привод
распространенными

Трехфазный реверсивный преобразователь
с нулевым выводом
A
T1
C
Uсинхр
N
a
UZ1
B
b1
1
c1
a2
b
c2
2
Iур2
Lур1
Id1
Udα
Iур2
VS1…
VS3
UZ2
Lур2
Id2
M1
Н.И. Усенков. Электриче
LM1
ский привод
VS4…
VS6
СИФУ 1
СИФУ 2
Uсинхр
Uзс

Трехфазные схемы выпрямителей применяются при индуктивной
нагрузке для питания обмоток возбуждения электрических машин,
шестифазные
для питания якорных цепей двигателя,
двенадцатифазные особо мощных электроприводов.
Работа реверсивного преобразователя
Предположим, что в начальный момент времени машина
вращалась по часовой стрелке со скоростью n об/мин. При этом она
развивала противо-ЭДС Eяк и через якорную цепь протекал ток I
(рисунок
). Питание машины осуществлялась от первого
вентильного комплекта преобразователя UZ1, работающего в
выпрямительном режиме. Для снижения скорости вращения
машины надо уменьшить подводимое к ней напряжение питания, то
есть необходимо увеличить угол управления тиристорами
VS1,VS2,VS3 выпрямителя UZ1.
Н.И. Усенков. Электриче
ский привод

При этом из-за инерции двигателя его противо-ЭДС Eяк не может
резко изменится и оказывается больше, чем напряжение Ud1 на
выходе
преобразователя
(на
якоре
двигателя).
Вентили
преобразователя UZ1 быстро запираются, и ток нагрузки снижается
до нуля. Но на зажимах якорной цепи электрической машины,
вращающейся по инерции, сохраняется противо-ЭДС Eяк, что
позволяет полезно использовать кинетическую энергию вращающего
привода, преобразовав ее в электрическую, и одновременно быстро
затормозить электрическую машину.
Для этого требуется перевести первый вентильный комплект в
инверторный режим, то есть увеличить угол α1 > 90°. Но первый
комплект UZ1 преобразователя нельзя использовать в инверторном
режиме, так как необходимо иметь на машине обратную полярность
напряжения Ud1. Поэтому в инверторный режим переводится второй
вентильный комплект UZ2 (α2 > 90°), выход которого подключен к
нагрузке параллельно выходу первого комплекта UZ1. Машина
работает в генераторном режиме, поэтому скорость вращения ее
падает. Следовательно, снижается и противо-ЭДС Eяк, являющаяся
питающим напряжениемН.И.
дляУсенков.
второгоЭлектриче
комплекта UZ2, работающего в
инверторном режиме. ский привод

n
Торможени
Двиг. е
Разгон
режим
Двиг.
режим
0
t
Реверс
I
E
0
t
<90
UZ2
В
И
>90
И
>90
<90
UZ1
В
UZ1
<90
В
Рис 1.2. Диаграмма режимов работы
электрической машины постоянного тока
Н.И. Усенков. Электриче
ский привод

При остановке электрической машины (Eяк=0; n=0) можно
перевести второй комплект вентилей UZ2 в выпрямительный
режим (α2<90°). При этом электрическая машина опять переходит
в режим двигателя и питается от второго комплекта вентилей
UZ2.
Направление
вращения
машины
изменяется
на
противоположное (реверс двигателя), и она снова начинает
разгоняться (от n=0 до заданной частоты вращения, например, до
n=nном в третьем квадранте координат электропривода: n и I или n
и M).
Если вновь требуется осуществить реверс, то увеличивается
угол α2 второго комплекта вентилей UZ2, его вентили запираются.
Первый комплект вентилей UZ1 переводится в инверторный
режим (α 1>90°), направление тока якоря Id меняется на обратное,
электрическая машина работает в генераторном режиме до
полной остановки двигателя.
В дальнейшем с уменьшением угла α1>90° первый комплект
вентилей UZ1 переводится в выпрямительный режим и
осуществляется разгон двигателя до заданной частоты вращения.
Н.И. Усенков. Электриче
ский привод

Регулировочная характеристика реверсивного
преобразователя
Udα
Ud0
Udα1
α1
Режим
выпрямителя
0
Udβ1
π
π/2
Режим
инвертора
α2
β1
-Ud0
Udβ
Н.И. Усенков. Электриче
ский привод
α
β

При равенстве средних значений напряжений на
выходе UZ1 и UZ2 получаем выражение
Udocosα1= Udocosβ2.
Следовательно, необходимо, чтобы α1= β2. Так как при
инверторном режиме β =180°- α, то условие равенства
средних значений напряжений в уравнительном контуре
можно представить в виде α1+ α2 =180°, где α1 и α2 – углы
управления тиристорами первого и второго комплектов
вентилей, отсчитываемые от точки естественного
отпирания тиристоров.
Н.И. Усенков. Электриче
ский привод

Внешние характеристики реверсивного
преобразователя
Внешние характеристики выпрямительного и инверторного
комплектов в этом случае являются продолжением одна
другой и дают линейную результирующую внешнюю
характеристику реверсивного преобразователя
Udα
β1
α1
β1 > β
2
α2 > α
β3 > β
2
1
α3 > α
2
Режим
инвертора
Режим
выпрямителя
0
Н.И. Усенков. Электриче
ский привод
Id

Совместное управление вентильными
комплектами
Если импульсы управления подаются одновременно на
вентили обоих комплектов UZ1 и UZ2, а углы управления
тиристорами соответствуют условию
α1 + α2 = π,
управление
вентильными
согласованным.
группами
Н.И. Усенков. Электриче
ский привод
называют

Раздельное управление вентильными
комплектами
Для того, чтобы получить электропривод, работающий во всех четырех
квадрантах поля: ω – I или ω - М, необходимо использование реверсивного
тиристорного преобразователя, обеспечивающего протекание тока якоря
двигателя в обоих направлениях.
Реверсивные преобразователи содержат две группы тиристоров,
включенных встречно-параллельно друг другу.
В этой схеме два вентильных комплекта UZ1 и UZ2, собранные каждый по
трехфазной мостовой схеме, включены параллельно друг другу с
противоположной полярностью на стороне выпрямленного тока.
Подавать отпирающие импульсы одновременно на обе группы тиристоров
нельзя, так как произойдет короткое замыкание. Поэтому в данной схеме
может работать только
Н.И. Усенков. Электриче
ский привод

одна группа тиристоров UZ1 или UZ2; другая группа
тиристоров должна быть закрыта (отпирающие импульсы
сняты).
Таким образом, реверсивные преобразователи с
раздельным управлением - это такие преобразователи, в
которых управляющие импульсы приходят только на один
из комплектов вентилей, проводящих ток. Импульсы
управления на второй комплект вентилей в это время не
подаются, и его вентили заперты. Реактор Lур в схеме
может отсутствовать. См Горби243с
При раздельном управлении вентилями включается
только та группа тиристоров, которая в данный момент
должна проводить ток в нагрузке. Выбор этой группы
зависит от направления движения привода («Вперед» или
«Назад») и от режима работы привода: двигательный
режим или рекуперативное торможение.
Н.И. Усенков. Электриче
ский привод

Таблица 1 – Выбор вентильного комплекта
Режим работы ЭП
Двигательный
Тормозной
Направление
движения
«Вперед»
UZ1
UZ2
«Назад»
UZ2
UZ1
В системах управления ЭП выбор и включение нужной группы
тиристоров производится автоматически посредством логического
переключающего устройства ЛПУ, принцип построения которого
показан на рисунке.
Н.И. Усенков. Электриче
ский привод

Примем направление тока якоря при работе «Вперед» в
двигательном режиме за положительное. При положительном сигнале
задания скорости ωзад, соответствующем движению
«Вперед», и
сигнале ошибки по скорости, которая в двигательном режиме также
будет (ωзад- ω)≥0, сигнал, поступающий на ЛПУ от регулятора тока,
будет иметь знак (+). В соответствии с этим ЛПУ включит электронный
ключ QS1, который подает отпирающие импульсы на тиристорную
группу UZ1. Угол управления α1 устанавливается системой
автоматического регулирования в соответствии с сигналом выхода
регулятора тока РТ. Обе СИФУ (1) и (2) работают согласованно так,
что сумма углов сумма
α1 + α 2 = π .
(1)
Таким образом, на тиристорную группу, работающую в
выпрямительном режиме, подаются отпирающие импульсы с углом α1 =
0… π/2. При этом СИФУ2 вырабатывает импульсы
Н.И. Усенков. Электриче
ский привод

управления с углом α2 = π - α1, то есть с углом управления,
соответствующем
инверторному
режиму
работы
преобразователя UZ2. Однако, поскольку электронный ключ
QS2 разомкнут, импульсы управления на тиристоры группы
UZ2 не поступают.
Преобразователь UZ2 закрыт, но
подготовлен к работе в инверторном режиме.
Такой
принцип
согласованного
управления
вентильными комплектами, определяемый (1), позволяет
согласовать механические характеристики привода в
двигательном и тормозном режимах, что показано на
рисунке.
При
необходимости
торможения
привода
уменьшается сигнал задания скорости ωзад. Ошибка по
скорости меняет знак (ωзад - ω) <0, и на входе ЛПУ знак
сигнала изменяется с (+) на (-), в соответствии с чем
Н.И. Усенков. Электриче
ский привод

Отключается контакт QS1 и включается контакт QS2. Однако
включение контакта QS2 происходит не сразу, а с некоторой
выдержкой времени, которая необходима, чтобы ток якоря
уменьшился до нуля и тиристоры UZ1 восстановили запирающие
свойства. Спадание тока до нуля контролируется датчиком тока ДТ и
нуль-органом НО (в других схемах для этой цели используются
датчики проводимости вентилей).
Когда ток спадет до нуля, по прошествии некоторой выдержки
времени, включается ключ QS2 и вступает в работу преобразователь
UZ2, уже подготовленный к работе в инверторном режиме. Привод
переходит в режим рекуперативного торможения, Общее время
переключения тиристорных групп составляет 5 – 10 мс, что является
допустимым для обеспечения высокого качества управления ЭП.
При работе в двигательном режиме в направлении «Назад» знак
задания скорости отрицателен, а абсолютное значение
Н.И. Усенков. Электриче
ский привод

ошибки по скорости |ωзад - ω | положительно, поэтому на
вход ЛПУ поступает отрицательный сигнал, и включается
ключ
QS2.
Работает
преобразователь
UZ2
в
выпрямительном режиме. Логические правила работы
ЛПУ иллюстрируются таблицей 2.
Находят применения также и другие схемы ЛПУ.
Механические характеристики реверсивного привода ТП-Д
с раздельным управлением показаны на рисунке.
При непрерывном токе
описываются уравнением (1).
якоря
двигателя
они
В режиме прерывистых токов в области малых
значений момента линейность характеристик нарушается.
В современных замкнутых по току и скорости системах
регулирования, благодаря применению адаптивных
регуляторов, удается линеаризировать механические
характеристики ЭП иН.И.
приУсенков.
малыхЭлектриче
значениях момента.
ский привод

Таблица 2 – Логика работы ЛПУ
Знак
Знак
Знак
Включен
Работает
Режим
ωзад
|ωзад- ω|
на входе
ключ
работы
ЛПУ
QS
преобразовате
ль
+
+
+
QS1
UZ1
+
-
QS2
UZ2
-
+
-
QS2
UZ2
-
-
+
QS1
UZ1
Н.И. Усенков. Электриче
ский привод
электропривод
а
Двигательны
й
Тормозной
Двигательны
й
Тормозной

Внешняя характеристика выпрямителя
Udα
Ud0
Ud1
0
Id
I d1
I к.з
Н.И. Усенков. Электриче
ский привод

7.Электропривод и автоматика промышленных установок и технологических комплексов

Техническая реализация
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Задание 1. Определить значения приведенных моментов J и Мс при
подъеме груза (рисунок 1), если известно: Jд=3,2 кг м2; Jр.о.=3,6 кг м2;
передаточное число редуктора р=0,96; КПД исполнительного органа
(барабана) Б=0,94; угловая скорость двигателя ω=112 рад/с; скорость
подъема груза v=0,2 м/с; масса груза m=1000 кг.
Пояснение.
Приведенный статический момент:
Mc
F p . o . p . o .
p Б Д
m g p.o.
p Б Д
1000 9,81 0,2
19,41H m
0,96 0,94 112
Приведенный момент инерции J:
J
J Д J ро
i p2
m(
2 3,2 3,6
0,2 2
1000
) 3,3 кг м2.
2
Д
112
6,14
Н.И. Усенков. Электриче
ский привод

Jд, nп, iп, п
М, д, Jд
Д
ПУ
Мpo, po, Jpo
РО (б), и схема 3.Ознакомиться с
MatLab7/Simulink3.
библиотекой
основных
блоков
в
программе
4.Составить блок-модель лабораторной установки для проведения
исследования в соответствии с заданной темой и дать краткое описание
используемых функциональных устройств и виртуальных измерительных
приборов.
5.Изучить виртуальную лабораторную установку и ввести исходные
данные в диалоговые окна программы. Сформулировать план проведения
эксперимента.
6.После выполнения работы составить отчет по структуре:
Название работы и цель работы;
Описание лабораторного стенда;
Анализ осциллограм экспериментальных зависимостей;
Выводы.
Н.И. Усенков. Электриче
ский привод

Работа № N. Исследование электропривода по
структуре «Выпрямитель-преобразовательасинхронный двигатель»
Блок-модель электропривода с асинхронным двигателем
Н.И. Усенков. Электриче
ский привод

Результаты моделирования
Н.И. Усенков. Электриче
ский привод

Н.И. Усенков. Электриче
ский привод

Лекции по дисциплине «Автоматизированный электропривод» Литература 1. Чиликин М.Г., Сандлер А.С. Общий курс электропривода (ЭП).-6-е изд. -М.: Энергоиздат, – 576 с. 2. Москаленко В.В. Электрический привод - М.: Мастерство; Высшая школа, –368 с. 3. Москаленко В.В. Электрический привод: Учебник для электротехн. спец. -М.: Высш. шк., – 430 с. 4. Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева, А.В. Шиянского.-М.: Энергоатомиздат,1983. – 616 с. 5. Москаленко В.В. Автоматизированный электропривод: Учебник для вузов.- М.:Энергоатомиздат, с. 6. Ключев В.И. Теория электропривода. - М.:Энергоатомиздат, с. 7. ГОСТ Р –92. Электроприводы. Термины и определения. Госстандарт России. 8. Справочник инженера – электрика с.-х. производства / Учебное пособие.-М.: Информагротех, с. 9. Методические указания к выполнению лабораторных работ по основам электропривода для студентов факультета электрификации с.х. / Ставрополь, СтГАУ, «АГРУС», – 45 с. 10. Савченко П.И. Практикум по электроприводу в с.х. – М.: Колос, с. Рекомендуемые сайты в Internet: Лекции по дисциплине «Автоматизированный электропривод» Литература 1. Чиликин М.Г., Сандлер А.С. Общий курс электропривода (ЭП).-6-е изд. -М.: Энергоиздат, – 576 с. 2. Москаленко В.В. Электрический привод - М.: Мастерство; Высшая школа, –368 с. 3. Москаленко В.В. Электрический привод: Учебник для электротехн. спец. -М.: Высш. шк., – 430 с. 4. Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева, А.В. Шиянского.-М.: Энергоатомиздат,1983. – 616 с. 5. Москаленко В.В. Автоматизированный электропривод: Учебник для вузов.- М.:Энергоатомиздат, с. 6. Ключев В.И. Теория электропривода. - М.:Энергоатомиздат, с. 7. ГОСТ Р –92. Электроприводы. Термины и определения. Госстандарт России. 8. Справочник инженера – электрика с.-х. производства / Учебное пособие.-М.: Информагротех, с. 9. Методические указания к выполнению лабораторных работ по основам электропривода для студентов факультета электрификации с.х. / Ставрополь, СтГАУ, «АГРУС», – 45 с. 10. Савченко П.И. Практикум по электроприводу в с.х. – М.: Колос, с. Рекомендуемые сайты в Internet:








Источник электрической энергии (ИЭЭ) Управляющее устройство (УУ) Преобразовательное устройство (ПРБ) Электродвигательное устройство (ЭД) М Передаточное устройство (ПРД) Потребитель механической энергии (ПМЭ) U,I,f М д, ω д U д,I д,f д F д, V д М м (F м), ω м (V м) задания Рисунок 3 – Структурная схема АЭП


3 Коэффициент полезного действия АЭП Как и для всякого электромеханического устройства, важным показателем является коэффициент полезного действия АЭП = ПРБ · ЭД · ПРД Так как коэффициент полезного действия ПРБ и ПРД1 и мало зависит от нагрузки, то АЭП определяется ЭД, которое также является достаточно высоким и при номинальной нагрузки составляет 60-95%.


4 Достоинства АЭП 1) низкий уровень шума при работе; 2) отсутствие загрязнения окружающей среды; 3) широкий диапазон мощностей и угловых скоростей вращения; 4)доступность регулирования угловой скорости вращения и соответственно производительности технологической установки; 5)относительная простота автоматизации, монтажа, эксплуатации по сравнению с тепловыми двигателями, например, внутреннего сгорания.

Современный электропривод представляет собой конструктивное единство электромеханического преобразователя энергии (двигателя), силового преобразователя и устройства управления. Он обеспечивает преобразование электрической энергии в механическую в соответствии с алгоритмом работы технологической установки. Сфера применения электрического привода в промышленности, на транспорте и в быту постоянно расширяется. В настоящее время уже более 60% всей вырабатываемой в мире электрической энергии потребляется электрическими двигателями. Следовательно, эффективность энергосберегающих технологий в значительной мере определяется эффективностью электропривода. Разработка высокопроизводительных, компактных и экономичных систем привода является приоритетным направлением развития современной техники. Последнее десятилетие уходящего века ознаменовалось значительными успехами силовой электроники – было освоено промышленное производство биполярных транзисторов с изолированным затвором (IGBT), силовых модулей на их основе (стойки и целые инверторы), а также силовых интеллектуальных модулей (IPM) с встроенными средствами защиты ключей и интерфейсами для непосредственного подключения к микропроцессорным системам управления. Рост степени интеграции в микропроцессорной технике и переход от микропроцессоров к микроконтроллерам с встроенным набором специализированных периферийных устройств, сделали необратимой тенденцию массовой замены аналоговых систем управления приводами на системы прямого цифрового управления. Под прямым цифровым управлением понимается не только непосредственное управление от микроконтроллера каждым ключом силового преобразователя (инвертора и управляемого выпрямителя, если он есть), но и обеспечение возможности прямого ввода в микроконтроллер сигналов различных обратных связей (независимо от типа сигнала: дискретный, аналоговый или импульсный) с последующей программно-аппаратной обработкой внутри микроконтроллера. Таким образом, система прямого цифрового управления ориентирована на отказ от значительного числа дополнительных интерфейсных плат и создание одноплатных контроллеров управления приводами. В пределе встроенная система управления проектируется как однокристальная и вместе с силовым преобразователем и исполнительным двигателем конструктивно интегрируется в одно целое – мехатронный модуль движения.

Рассмотрим обобщенную структуру электропривода (рис. 6.25). В ней можно выделить два взаимодействующих канала – силового, выполняющего передачу и преобразование энергии из электрической в механическую, и информационного.

В зависимости от требований к электроприводу в качестве электромеханического преобразователя используются различные электрические машины: асинхронные и синхронные переменного тока, коллекторные и бесколлекторные постоянного тока, шаговые, вентильно-реактивные, вентильно-индукторные и т. д.


Информационный канал предназначен для управления потоком энергии, а также сбора и обработки сведений о состоянии и функционировании системы, диагностики ее неисправностей. Информационный канал может взаимодействовать со всеми элементами силового канала, а также с оператором, другими системами электропривода и системой верхнего уровня управления.

Рис. 6.25. Обобщенная структура электропривода

Долгое время массовое применение регулируемых приводов сдерживалось двумя факторами:

относительно малыми допустимыми значениями токов, напряжений и частоты переключений силовых полупроводниковых приборов;

ограничением сложности алгоритмов управления, реализуемых в аналоговой форме или на цифровых микросхемах малой и средней степени интеграции.

Появление тиристоров на большие токи и напряжения решило проблему статического преобразователя для электропривода постоянного тока. Однако необходимость принудительного закрывания тиристоров по силовой цепи существенно усложняла создание автономных инверторов для частотноуправляемого электропривода переменного тока. Появление мощных полностью управляемых полевых транзисторов, обозначаемых в зарубежной литературе MOSFET (Metal – Oxide – Semiconductor Field Effect Transistor), и биполярных транзисторов с изолированным затвором IGBT (Isulated Gate Bipolar Transistor) привело к бурному развитию преобразовательной техники и постоянному расширению сферы применения асинхронных электроприводов с преобразователями частоты. Другим фактором, обусловившим возможность массового внедрения частотноуправляемого электропривода, было создание однокристальных микроконтроллеров достаточной вычислительной мощности.

Анализ продукции ведущих мировых производителей систем привода и материалов опубликованных научных исследований в этой области позволяет отметить следующие ярко выраженные тенденции развития электропривода:

Неуклонно снижается доля систем привода с двигателями постоянного тока и увеличивается доля систем привода с двигателями переменного тока . Это связано с низкой надежностью механического коллектора и более высокой стоимостью коллекторных двигателей постоянного тока по сравнению с двигателями переменного тока. По прогнозам специалистов в начале следующего века доля приводов постоянного тока сократится до 10 % от общего числа приводов.

Преимущественное применение в настоящее время имеют привода с короткозамкнутыми асинхронными двигателями . Большинство таких приводов (около 80 %) – нерегулируемые. В связи с резким удешевлением статических преобразователей частоты доля частотно-регулируемых асинхронных электроприводов быстро увеличивается.

Естественной альтернативой коллекторным приводам постоянного тока являются привода с вентильными , т. е. электронно-коммутируемыми двигателями . В качестве исполнительных бесколлекторных машин постоянного тока (БМПТ) преимущественное применение получили синхронные двигатели с возбуждением от постоянных магнитов или с электромагнитным возбуждением (для больших мощностей). Этот тип привода наиболее перспективен для станкостроения и робототехники, однако, является самым дорогостоящим. Некоторого снижения стоимости можно добиться при использовании синхронного реактивного двигателя в качестве исполнительного.

Приводом следующего века по прогнозам большинства специалистов станет привод на основе вентильно-индукторного двигателя (ВИД). Двигатели этого типа просты в изготовлении, технологичны и дешевы. Они имеют пассивный ферромагнитный ротор без каких-либо обмоток или магнитов. Вместе с тем, высокие потребительские свойства привода могут быть обеспечены только при применении мощной микропроцессорной системы управления в сочетании с современной силовой электроникой. Усилия многих разработчиков в мире сконцентрированы в этой области. Для типовых применений перспективны индукторные двигатели с самовозбуждением, а для тяговых приводов – индукторные двигатели с независимым возбуждением со стороны статора. В последнем случае появляется возможность двухзонного регулирования скорости по аналогии с обычными приводами постоянного тока.

6.2.1. Асинхронные электроприводы
со скалярным управлением

Скалярные способы управления обеспечивали достижение тре­буемых статических характеристик и использовались в электропри­водах со «спокойной» нагрузкой . На входе этих систем, как прави­ло, включались задатчики интенсивности, которые ограничивали скорость нарастания (убывания) входного сигнала до такой величи­ны, при которой процессы в системе можно считать установившимися, то есть в уравнении можно было бы пренебречь слагаемым , так как .

На рис. 6.26 приведены механические характеристики асинхрон­ного короткозамкнутого двигателя для всех четырех законов управ­ления для линейной модели, не учитывающей насыщение магнитопровода. Следует повторить, что перечисленные законы управления широко использовались и хорошо себя зарекомендовали в электро­приводах, где не требуется быстродействия по управлению и нет резких изменений момента нагрузки.

Рис. 6.26. Механические характеристики АКЗ
при различных законах управления

Простейшим из перечисленных законов является первый: .Этот закон при использовании инвертора с синусоидальной ШИМ реализован практически во всех полупроводнико­вых преобразователях, которые выпускаются многочисленными фирмами и предлагаются на рынке. Удобство этого закона заключа­ется в том, что электропривод может работать без отрицательной обратной связи по скорости и обладать естественной жесткостью механических характеристик в ограниченном диапазоне регулиро­вания скорости.

В электроприводах со скалярным управлением для регулирова­ния или стабилизации скорости используются и иные соотношения между частотой и напряжением. Выбор этого соотношения зависит от момента нагрузки и определяется из условий сохранения пере­грузочной способности:

где М max – максимальный момент АКЗ, Μ Н – момент нагрузки на валу машины.

Закон изменения напряжения и частоты, удовлетворяющий тре­бованию (6.15) при допущении r s = 0, установлен
М.П. Костенко. Этот закон имеет вид

где U НОМ , f НОМ , Μ НОМ – номинальные значения, приводимые в паспортных данных машины.

Если закон изменения момента заранее известен, то можно оп­ределить требуемое соотношения напряжения и частоты на выхо­де инвертора. Рассмотрим три классических вида нагрузок на валу машины:

M H = const, ; P H = M H wm = const, ; . (6.16)

В имеющихся на рынке преобразователях часто предусматри­вается возможность перестройки с целью обеспечения всех трех законов. Схема электропривода, реализующая рассмотренные за­коны, показана на рис. 6.27. Функциональный преобразователь (ФП) реализует одну из зависимостей (6.16), определяемую харак­тером нагрузки. Полупроводниковый преобразователь (ПП) вклю­чает в себя автономный инвертор и его систему управления, задатчик интенсивности (ЗИ), как уже было отмечено, формирует медленно нарастающий входной сигнал. В этом случае в электроприводе нарастание скорости не будет сопровождаться интенсивными колебаниями момента и тока, которые наблюдаются при прямом пуске.

Рис. 6.27. Функциональная схема разомкнутого асинхронного

При более сложных нагрузках используются иные законы скалярного регулирования, которые реализуются с использованием обратных связей. Эти законы рассмотрены выше на основании анализа работы асинхронной машины в установившемся режиме.

Рассмотрим ещё один скалярный закон управления, который используется при построении электроприводов с автономными инверторами тока – это закон ψ R = const.

Реализация этой зависимости в электроприводе показана на функциональной схеме (рис. 6.28). Такие системы получили назва­ние частотно-токовых.

Блок ПП в системе может быть реализован двояким способом. В первом случае (рис. 6.28) он содержит управляемый выпрямитель, последовательный индуктивный фильтр и автономный инвертор. Следует подчеркнуть, что индуктивный фильтр придаёт инвертору характеристику источника тока. Такой источник тока называется параметрическим.

Рис. 6.28. Функциональная схема асинхронного
электропривода со скалярным управлением

6.2.2. Асинхронные электроприводы
с векторным управлением

На рис. 6.29 показана структура привода переменного тока с векторным управлением. В качестве исполнительного двигателя может применяться либо синхронный двигатель с активным магнитоэлектрическим ротором, либо синхронный реактивный двигатель. Возможно использование этой структуры и для управления трехфазными вентильно-индукторными двигателями с разнополярным питанием, а также шаговыми двигателями в режиме бесколлекторных двигателей постоянного тока.

В качестве силового преобразователя используется инвертор на IGBT-ключах или интеллектуальных силовых модулях. Драйверы ключей инвертора подключены непосредственно к выходам ШИМ-генератора микроконтроллера, работающего в режиме широтно-импульсной модуляции базовых векторов (векторной ШИМ-модуляции), что обеспечивает максимально высокую степень использования напряжения звена постоянного тока и минимизацию динамических потерь в инверторе (ниже более подробно).

Рис. 6.29. Структурная схема привода
переменного тока с векторным управлением

Структура на рис. 6.29 предполагает использование импульсного датчика положения ротора двигателя. Сигналы с датчика вводятся непосредственно в контроллер и обрабатываются в блоке оценки положения, который может быть реализован на основе специального периферийного устройства – таймера с «квадратурным» режимом работы . Код механического положения ротора программно преобразуется в код электрического положения ротора внутри полюсного деления машины q. Для реализации блока оценки скорости могут применяться либо специальные периферийные устройства микроконтроллера, принцип действия которых основан на измерении временного интервала отработки двигателем заданного отрезка пути (эстиматоры скорости) , либо периферийные устройства общего назначения, такие как процессоры событий или менеджеры событий . В последнем случае таймер, работающий в «квадратурном» режиме является базовым для одного из каналов сравнения. Как только двигатель отработает заданный отрезок пути, возникнет прерывание по сравнению. В процедуре обслуживания этого прерывания центральный процессор определит временной интервал с момента предыдущего прерывания и выполнит расчет текущей скорости привода w. Желательно, чтобы таймер, работающий в «квадратурном» режиме допускал начальную инициализацию в соответствии с числом меток на оборот импульсного датчика положения, а также имел режим автоматической коррекции своего состояния по реперному датчику. Эстиматор скорости должен работать с регулируемым разрешением как по числу импульсов на периоде измерения скорости (от 1 до 255), так и с регулируемым разрешением по времени (максимальное разрешение 50 – 100 нс при диапазоне регулирования разрешения 1:128). Если перечисленные выше требования к периферийным устройствам микроконтроллера будут выполнены, то окажется возможным измерение скорости в диапазоне, как минимум, 1:20000 с точностью, не хуже 0,1%. Для измерения электрических переменных микроконтроллер должен иметь встроенный АЦП с разрешением не ниже 10 – 12 двоичных разрядов и временем преобразования не хуже 5 – 10 мкс. Как правило, восьми каналов АЦП достаточно для приема не только сигналов обратных связей по токам фаз, но и сигналов обратных связей по напряжению и току в звене постоянного тока, а также внешних задающих сигналов. Дополнительные аналоговые сигналы используются для реализации защит инвертора и двигателя. Работа АЦП будет более производительной, если микроконтроллер допускает режим автоматического сканирования и запуска процесса преобразования. Обычно это делается либо с помощью отдельного периферийного устройства – процессора периферийных транзакций , либо с помощью режима автозапуска АЦП от процессора событий или генератора ШИМ-сигналов. Желательно, чтобы выборка как минимум двух аналоговых сигналов была одновременной.

В блоке векторной ШИМ-модуляции выполняется сначала преобразование компонент вектора напряжения к полярной системе координат (g, r), связанной с продольной осью ротора, а затем, с учетом текущего положения ротора q, определяется рабочий сектор, внутрисекторный угол и рассчитываются компоненты базовых векторов в абсолютной системе координат, связанной со статором. Формируются напряжения, прикладываемые к обмоткам двигателя U a , U b , U c . Все перечисленные выше преобразования координат (прямые и обратные преобразования Парка и Кларка) должны выполняться в реальном времени. Желательно, чтобы используемый для реализации системы векторного управления микроконтроллер имел встроенную библиотеку функций , адаптированных для эффективного управления двигателями, в том числе функций преобразования координат. Время реализации каждой из этих функций не должно превышать нескольких микросекунд.

Отличительной особенностью системы векторного управления асинхронными двигателями является необходимость использования дополнительного вычислительного блока, в котором производится оценка текущего углового положения вектора потокосцепления ротора. Это делается на основе решения в реальном времени системы дифференциальных уравнений, составленных в соответствии с математической моделью двигателя. Естественно, что подобная операция требует дополнительных вычислительных ресурсов центрального процессора.

6.2.3. Вентильные и бесконтактные
машины постоянного тока

Бесконтактные машины постоянного тока (БМПТ) и вен­тильные машины (ВМ) – это синхронный двигатель в замкнутой системе (рис. 6.30), реализованной с использова­нием датчика положения ротора (ДПР), преобразователя координат (ПК) и силового полупроводникового преобра­зователя (СПП).

Разница между БМПТ и ВМ заключается только в способе фор­мирования напряжения на выходе силового полупроводникового преобразователя. В первом случае формируется импульсное напряжение (ток) на обмотках машины. Во втором случае на выходе СПП форми­руется синусоидальное или квазисинусоидальное напряжение (ток).

Следует заметить, что БМПТ отличаются от шаговых машин тем, что включены в замкнутую систему формирования напряже­ния. В них напряжение формируется в зависимости от положения ротора, и это является их принципиальным отличием от шаговых, в которых положение ротора зависит от числа управляющих им­пульсов.

Рис. 6.30. Функциональная схема БМПТ и ВМ


Особняком в ряду синхронных машин стоят гистерезисные и реактивные двигатели. Эти машины редко используются в электро­приводе.

Из всех рассмотренных типов синхронных машин в управляе­мых системах наиболее перспективными считаются вентильные машины.

В ряде применений, например, для приводов с вентильно-индукторными и бесколлекторными двигателями постоянного тока, вполне достаточно на интервале коммутации поддерживать в обмотке двигателя заданный фиксированный уровень тока. Структура системы управления при этом заметно упрощается. Особенность схемы (рис. 6.31) состоит в том, что ШИМ‑генератор обеспечивает сразу две функции: автокоммутацию фаз двигателя по сигналам датчика положения и поддержание тока на заданном уровне путем регулирования приложенного к обмоткам двигателя напряжения.

Первая функция может быть реализована автоматически, если генератор имеет встроенный блок управления выходами , допускающий прием команд от процессора событий. Вторая функция традиционна и реализуется путем изменения скважности выходных ШИМ-сигналов. Для оценки положения ротора двигателя можно использовать либо датчик положения на элементах Холла, либо более дорогой импульсный датчик положения. В первом случае сигналы с датчика положения вводятся в микроконтроллер на входы модулей захвата процессора событий .

Отработка двигателем каждого целого шага идентифицируется процессором событий и вызывает автокоммутацию ключей инвертора. Прерывание, возникающее при каждом захвате фронта сигнала с датчика, используется для оценки времени между двумя соседними переключениями и, далее, – скорости привода. Во втором случае можно получить более точную информацию о текущем положении ротора двигателя и о его скорости, что может потребоваться в приводах с интеллигентным управлением углом коммутации в функции скорости. Таким образом, полноценные системы векторного управления приводами переменного тока требуют для своей реализации высокопроизводительных микроконтроллеров с широким набором перечисленных выше встроенных периферийных устройств, допускающих совместную работу и требующих от центрального процессора минимальных ресурсов на свое обслуживание.

Рис. 6.31. Блок-схема системы управления
бесколлекторным двигателем постоянного тока

6.3. Силовые полупроводниковые
преобразователи в системе
автоматизированного электропривода

Силовые полупроводниковые преобразователи в системах автоматики выполняют функцию регулирования скорости и момента электрического двигателя. Они включены между потребителем мощности (как правило, электрическим двигателем) и основным источником питания (рис. 6.32). По принципу действия силовые преобразователи разделяются на следующие базовые типы :

управляемые выпрямители (УВ) , которые преобразуют переменное, обычно синусоидальное напряжение источника питания постоянной частоты (как правило, промышленной
f и = 50 Гц или f и = 400 Гц) и с постоянным действующим значением (обычно U и = 220 В или U и = 360 В), в регулируемое выходное напряжение постоянного тока (U п = var, f п = 0).

широтно-импульсные преобразователи (ШИП) , которые преобразуют постоянное напряжение источника питания
(U и = const, f и = 0) в постоянное регулируемое напряжение постоянного тока на выходе (U п = var, f п = 0).

автономные инверторы (АИ) , которые преобразуют постоянное напряжение питания (U и = const, f и = 0) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (U п = var, f п = var).

непосредственные преобразователи частоты (НПЧ ) преобразуют переменное, обычно синусоидальное, напряжение постоянной частоты (f и = 400 Гц или f и = 50 Гц) постоянного действующего значения (обычно 220 В) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (U п = var, f п = var).

Рис. 6.32. Базовые способы использования силовых преобразователей

Следует заметить, что здесь постоянные напряжения (f = 0) характеризуются средними значениями U и.ср, U п.ср, а переменные (f ¹ 0) – действующими значениями (U и, U п).

Таким образом, силовые преобразователи УВ, ШИП могут использоваться для управления (напряжением, током, мощностью) потребителями постоянного тока. Причем, последние могут быть не только электрическими двигателями, но и являться потребителями с активной (резистивной) нагрузкой (такие силовые преобразователями применяются в регулируемых источниках питания). Если источником питания является сеть переменного тока, то может быть применен либо УВ, либо сочетание выпрямителя и ШИП.

Для потребителей переменного тока (которым чаще всего является машина переменного тока) применяется АИ, а при питании от источника переменного тока НПЧ, либо сочетания УВ и АИ, либо выпрямителя и АИ.


6.3.1. Управляемые выпрямители

Источником энергии для управляемых выпрямителей является сеть переменного тока. Принцип управления состоит в том, что в положительный полупериод питающего напряжения электронный ключ (как правило, тиристор) открывается и подает напряжение к потребителю лишь часть этого полупериода. Напряжение и ток на выходе управляемого выпрямителя содержат постоянные и переменные составляющие. Изменяя момент (фазу) открытия электронного ключа, меняют среднее значение напряжения на входе потребителя мощности. Управляемые выпрямители чаще всего используются для управления двигателем постоянного тока по цепи якоря.

Существует большое число различных схем управляемых выпрямителей. По принципу действия и построения они могут быть разделены на две группы: однополупериодные (схемы с нулевым проводом), в которых используют только одну полуволну напряжения сети, и двухполупериодные (мостовые схемы), где использованы обе полуволны переменного напряжения сети.

Рассмотрим работу простейшей двухполупериодной тиристорной схемы с чисто активной нагрузкой R н (рис. 6.33).

К источнику синусоидального напряжения сети U и с амплитудой н через тиристорный мост
VS1 VS4 . Диагональные тиристоры VS1 , VS4 и VS2 , VS3 открываются попарно, поочередно в момент времени, определяемый углом отпирания a.

В интервал α < wt < 180° к нагрузке подводится напряжение U п = U m sin wt .На рис. 6.35 кривая напряжения на нагрузке закрашена темным цветом.

Так как нагрузка активная (резистивная), кривая тока повторяет кривую напряжения. В момент времени wt = 180° ток уменьшается до нуля и соответствующая пара диагональных тиристоров закрывается. Этот процесс повторяется каждый полупериод. Управление тиристорами осуществляют импульсами малой длительности с достаточно крутым передним фронтом, что уменьшает потери мощности в тиристоре при включении, а следовательно, его нагрев.

Рассмотренный фазовый метод управления может быть реализован с помощью фазосдвигающих способов, одним из которых является вертикальный способ управления, основанный на сравнении опорного напряжения (обычно пилообразной формы) и постоянного напряжения сигнала управления. Равенство мгновенных значений этих напряжений определяет фазу a,при которой схема вырабатывает импульс, затем усиливаемый и подаваемый на управляющий электрод тиристора. Изменение фазы aуправляющего импульса достигается изменением уровня напряжения сигнала управления U упр. Функциональная схема управления приведена на рис. 6.34. Опорное напряжение, вырабатываемое генератором пилообразного напряжения ГПН и синхронизированное с напряжением сети с помощью синхронизирующего устройства СУ, подается на схему сравнения СС, на которую одновременно поступает и входное напряжение (сигнал управления). Сигнал со схемы сравнения поступает на формирователь импульсов (ФИ), затем на распределитель импульсов (РИ), на усилители мощности (У), откуда в виде мощного, обладающего крутым фронтом и регулируемого по фазе импульса подается на управляющий электрод.

Многие ошибочно полагают что электропривод – это электродвигатель выполняющий какую-то работу. На самом деле это не совсем верно. В систему электропривода входит не только электродвигатель, но и редуктор, система управления к нему, датчики обратной связи, различные реле и пр. Это не электрическая система, а электромеханическая. Она может быть регулируемой (автоматизированной, автоматической или не автоматизированной) или не регулируемой (насосы бытовые и пр.). Мы рассмотрим виды регулируемых устройств.

Не автоматизированный электропривод

При работе данного устройства все действия по регулированию каких-либо координат выполняются в ручном режиме. То есть для работы данного типа устройств необходим оператор, человек который будет следить за правильностью выполнения процессов. Как пример можно привести крановый электропривод, где все действия выполняются оператором.

Автоматизированный электропривод

В отличии от не автоматизированных приводов, в автоматизированных присутствуют сигналы обратной связи по координатам или параметрам (ток двигателя, скорость, положение, момент). Ниже приведена структурная схема:

Структурная схема автоматизированного электропривода

ЗА – защитная аппаратура (автоматические выключатели, предохранители и пр.)

ПЭЭ – преобразователь электрической энергии (частотник, тиристорный преобразователь)

ДТ – токовый датчик

ДН – датчик напряжения

СУ ПЭЭ – система управления преобразователем

ПУ – пульт управления

ПМ – передаточный механизм (муфта, редуктор и пр.)

РО – рабочий орган

ЭД — электродвигатель

При такой структуре управления СУ ПЭЭ управляет не только преобразователем, но и всей системой сразу. При таком управлении датчики обратной связи обеспечивают контроль за параметрами и сигнализируют об этом оператору. Данная система в автоматическом режиме может проводить некоторые операции (пуск, останов и пр.), но все равно требуется присутствие человека, для контроля, за работой данного устройства. Например, пуск много конвейерной линии, где пускаются не все конвейеры сразу, а по очереди, где учитывается также время пуска каждой линии и условия пуска. Точно также они и останавливаются.

Как видим из структурной схемы сигналы обратной связи приходят на пульт оператора, который непосредственно соблюдает технологический процесс, и часть приходит в систему управления преобразующим устройством для осуществления основных защит и отработки некоторых изменений задающего сигнала, поступающего с пульта управления.

Автоматический электропривод

Для работы электропривода в автоматическом режиме не требуется присутствие человека. В данном случае все происходит автоматически. Ниже приведена структурная схема:

Структурная схема системы автоматического управления электроприводом

АСУ ТП – автоматическая система управления технологическим процессом

Как видим из структурной схемы что в АСУ ТП приходят все датчики обратной связи. В ней происходит обработка сигналов от датчиков, и выдаются управляющие сигналы для других подсистем. Данная структура управления очень удобна, так как не требует постоянного наблюдения оператора за технологическим процессом, и снижает влияние человеческого фактора. Например модернизированные шахтные подъемные машины, которые могут работать в автоматическом режиме ориентируясь по датчикам обратной связи

В современном мире активно внедряются АСУ ТП не только для электроприводов. Очень редко встречаются системы с ручным управлением технологическими процессами все они либо автоматизированные, либо на этих линиях полностью внедрены АСУ ТП.

Транскрипт

1 А.В. Романов ЭЛЕКТРИЧЕСКИЙ ПРИВОД Курс лекций Воронеж 006 0

2 Воронежский государственный технический университет А.В. Романов ЭЛЕКТРИЧЕСКИЙ ПРИВОД Утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 006 1

3 УДК 6-83(075.8) Романов А.В. Электрический привод: Курст лекций. Воронеж: Воронеж. гос. техн. ун-т, с. В курсе лекций рассматриваются вопросы построения электрических приводов постоянного и переменного тока, анализа электромеханических и механических характеристик электрических машин, принципы управления в электроприводе. Издание соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению "Электротехника, электромеханика и электротехнологии". Курс лекций предназначен для студентов второго курса специальности "Электропривод и автоматика промышленных установок и технологических комплексов" очной формы обучения на базе среднего профессионального образования. Издание предназначено для студентов технических специальностей, аспирантов и специалистов, занимающихся вопросами разработки электроприводов. Табл. 3. Ил. 7. Библиогр.: 6 назв. Научный редактор канд. техн. наук, проф. Ю.М. Фролов Рецензенты: кафедра автоматизации технологических процессов Воронежского государственного архитектурно-строительного университета (зав. кафедрой д-р техн. наук, проф. В.Д. Волков); д-р техн. наук, проф. А.И. Шиянов Романов А.В., 006 Оформление. ГОУВПО «Воронежский государственный технический университет», 006

4 ВВЕДЕНИЕ Электрический привод (ЭП) играет большую роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации и комплексной механизации производственных процессов. Около 70 % вырабатываемой электроэнергии преобразуется в механическую энергию электродвигателями (ЭД), которые приводят в движение различные станки и механизмы. Современный ЭП отличается широким разнообразием применяемых средств управления от обычной коммутационной аппаратуры до ЭВМ, большим диапазоном мощностей двигателей, диапазоном регулирования скоростей до 10000:1 и более, применением как тихоходных, так и сверхскоростных ЭД. Электрический привод является единой электромеханической системой, электрическая часть которой состоит из электродвигательного, преобразовательного, управляющего и информационного устройств, а механическая часть включает в себя все связанные движущиеся массы привода и механизма. Широкое внедрение электрического привода во все отрасли промышленности и все возрастающие требования к статическим и динамическим характеристикам электроприводов предъявляют повышенные требования к профессиональной подготовке специалистов в области электрического привода. Необходимо заметить, что, поскольку студентам очной формы обучения на базе среднего специального образования учебным планом отведено минимальное количество учебных часов для освоения специальности, то прогресс в профессиональных знаниях сильно зависит от самостоятельной работы студентов. В частности, в конце данного издания приведен библиографический список научно-технической литературы, рекомендуемой к изучению помимо предлагаемого конспекта лекций. Кроме этого, в дополнение к курсу лекций выпущен лабораторный практикум по электроприводу , в котором рассматриваются вопросы экспериментального исследования 3

5 электропривода постоянного и переменного тока. Для более успешного усвоения дисциплины студентам рекомендуется заранее изучать текст лекций и содержательную часть лабораторных работ. Государственный образовательный стандарт высшего профессионального образования Российской Федерации регламентирует следующую обязательную тематику для учебного курса по дисциплине "Электрический привод". В Ы П И С К А из Государственного образовательного стандарта высшего профессионального образования государственных требований к минимуму содержания и уровню подготовки дипломированного инженера по направлению "Электротехника, электромеханика и электротехнологии", по специальности "Электропривод и автоматика промышленных установок и технологических комплексов" ОПД.Ф.09. "Электрический привод" Электропривод как система; структурная схема электропривода; механическая часть силового канала электропривода; физические процессы в электроприводах с машинами постоянного тока, асинхронными и синхронными машинами; электрическая часть силового канала электропривода; принципы управления в электроприводе; элементная база информационного канала; синтез структур и параметров информационного канала; элементы проектирования электропривода. Материал данного курса лекций полностью соответствует указанной тематике. 4

6 ЛЕКЦИЯ 1 ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОПРИВОДА КАК ОТРАСЛИ НАУКИ И ТЕХНИКИ Вопросы, рассматриваемые в лекции. 1. Краткая историческая справка о развитии электроприводов постоянного и переменного тока.. Работы отечественных и зарубежных ученых. 3. Роль электропривода в народном хозяйстве. 4. Структура и основные элементы современного автоматизированного электропривода. Электрический привод сравнительно молодая отрасль науки и техники, насчитывающая немногим более столетия с момента практического применения. Появление ЭП обусловлено трудами многих отечественных и зарубежных ученыхэлектротехников. В этом блистательном ряду имена таких крупных ученых как датчанин Х. Эрестед, показавший возможность взаимодействия магнитного поля и проводника с током (180 г.), француз А. Ампер, математически оформивший это взаимодействие в том же 180 г., англичанин М. Фарадей, построивший в 181 году экспериментальную установку, доказавшую возможность построения электродвигателя. Это отечественные ученые-академики Б.С. Якоби и Э.Х. Ленц, которым впервые удалось создать в 1834 году электродвигатель постоянного тока. Работа Б.С. Якоби по созданию двигателя получила широкую мировую известность, и многие последующие работы в этой области были вариацией или развитием его идей, например, в 1837 году американец Девенпорт построил свой электродвигатель с более простым коммутатором. В 1838 г. Б.С. Якоби усовершенствовал конструкцию ЭД, привнеся в него практически все элементы современной электрической машины. Этот электродвигатель, мощностью в 1 л.с., был использован для привода лодки, которая с 1 пассажирами совершила движение со скоростью до 5 км/ч против течения Не- 5

7 вы. Поэтому 1838 год считается годом рождения электропривода. Уже на этой первой, еще несовершенной модели электропривода обнаружились весьма значительные преимущества его по сравнению с господствовавшим в то время паровыми механизмами это отсутствие парового котла, запасов топлива и воды, т.е. существенно лучшие массогабаритные показатели. Однако несовершенство первого ЭД, а главное неэкономичность источника электроэнергии гальванической батареи, которая была разработана итальянцем Л. Гальвани (), явились причиной того что, работы Б.С. Якоби и его последователей сразу не получили практического применения. Требовался простой, надежный и экономичный источник электрической энергии. И выход был найден. Еще в 1833 году академик Э.Х. Ленц открыл принцип обратимости электрических машин, объединивший впоследствии пути развития двигателей и генераторов. И вот в 1870 г. сотрудник французской фирмы «Альянс» З. Грамм создал промышленный тип электрического генератора постоянного тока, давший новый импульс в развитие электропривода и внедрению его в промышленность. Вот некоторые примеры. Наш соотечественник электротехник В.Н. Чиколев () создает в 1879 году ЭП для дуговых ламп, электроприводы швейной машины (188) и вентилятора (1886), отмеченные золотыми медалями на всероссийских выставках. Происходит внедрение ЭП постоянного тока в военно-морском флоте: подъемник боезапасов на броненосце "Сисой Великий" (), первый рулевой привод на броненосце "1 Апостолов" (199). В 1895 году А.В. Шубин разработал систему «инжектор-двигатель» для рулевого управления, установленный в дальнейшем на броненосцах "Князь Суворов", "Слава" и др. Электропривод проникает в ткацкое производство на подмосковные текстильные фабрики Морозова, Лингардта, Прохоровскую мануфактуру, где уже к 1896 году работало значительное число двигателей постоянного тока. 6

8 Отмечаются случаи использования электропривода в городском транспорте трамвайные линии в городах Киеве, Казани и Нижнем Новгороде (189) и несколько позже в Москве (1903) и Петербурге (1907). Однако отмеченные успехи были незначительными. В 1890 году электропривод составлял всего лишь 5% от общей мощности используемых механизмов. Появившийся практический опыт требовал анализа, системотизации и разработки теоретической базы для последующего освещения путей развития ЭП. Огромную роль здесь сыграл научный труд нашего соотечественника крупнейшего электротехника Д.А. Лачинова (), опубликованный в 1880 году в журнале "Электричество" под названием "Электромеханическая работа", заложившей первые основы науки об электроприводе. Д.А. Лачинов убедительно доказал преимущества электрического распределения механической энергии, впервые дал выражение для механической характеристики двигателя постоянного тока с последовательным возбуждением, дал классификацию электрических машин по способу возбуждения, рассмотрел условия питания двигателя от генератора. Поэтому 1880 год год опубликования научного труда "Электромеханическая работа" считается годом рождения науки об электроприводе. Наряду с электроприводом постоянного тока пробивай себе дорогу в жизнь и электропривод переменного тока. В 1841 году англичанин Ч. Уитсон построил однофазный синхронный электродвигатель. Но он не нашел практического применения из-за трудностей при пуске. В 1876 году П.Н. Яблочков () разработал несколько конструкций синхронных генераторов для питания изобретенных им свечей, а также изобрел трансформатор. Следующим шагом на пути к ЭП переменного тока явилось открытие в 1888 году итальянцем Г. Феррарисом и югославом Н. Теслой явление вращающегося магнитного поля, что положило начало конструированию многофазных электродвигателей. Феррарисом и Теслой 7

9 были разработаны несколько моделей двухфазных двигателей переменного тока. Однако двухфазный ток в Европе не получил широкого распространения. Причиной этого была разработка русским электротехником М.О. Доливо-Добровольским () в 1889 году более совершенной трехфазной системы переменного тока. В этом же 1889 году 8 марта он запатентовал асинхронный электродвигатель с короткозамкнутым ротором (АД КЗ), а несколько позднее и с фазным ротором. Уже в 1891 году на электротехнической выставке во Франкфурте-на-Майне М.О. Доливо-Добровольский продемонстрировал асинхронные электдвигатели мощностью 0,1 квт (вентилятор); 1,5 квт (генератор постоянного тока) и 75 квт (насос). Доливо-Добровольским также были разработаны 3-х фазный синхронный генератор и 3-х фазный трансформатор, конструкции которых остается практически неизменными и в наше время. Марсель Депре в 1881 году обосновал возможность передачи электроэнергии на расстоянии, и в 188 была построена первая линия электропередачи протяженностью 57 км и мощность 3 квт. В результате вышеперечисленных работ были устранены последние принципиальные технические препятствия к распространению электрической передачи энергии и был создан наиболее надежный, простой и дешевый электрический двигатель, пользующийся в настоящее время исключительным распространением. Более 50 % всей электроэнергии преобразуется в механическую посредством самого массового электропривода на основе АД КЗ. Первые в России 3-х фазные ЭП переменного тока были установлены в 1893 году в Шепетовке и на Коломенском заводе, где к 1895 году было установлено 09 электродвигателей общей мощностью 1507 квт. И все же темпы внедрения электропривода в промышленность оставались низкими из-за отсталости России в области электротехнического производства 8

10 (,5 % от мировой продукции) и выработки электроэнергии (15 место в мире) даже в пору расцвета царской России (1913). После победы Великой Октябрьской революции в 190 г. был поставлен вопрос о коренной реорганизации всего народного хозяйства. Был разработан план ГОЭЛРО (государственный план электрификации России), предусматривающий в течение лет создание 30 тепловых и гидроэлектростанций общей мощностью 1 млн. 750 тыс. квт (к 1935 году было введено около 4,5 млн. квт). Работая над планом ГОЭЛРО, В.И. Ленин отметил, что "электрический привод как раз наиболее надежно обеспечивает и любую быстроходность и автоматическую связанность операций на самом обширном поле труда". Почему уделялось такое большое внимание электроприводу и электрификации? Дело очевидно в том, что ЭП является силовой основой выполнения механической работы и автоматизации производственных процессов с высоким КПД, при этом электропривод создает все условия для высокопроизводительного труда. Вот простой пример. Известно, что в течении рабочего дня один человек может при помощи мускульной энергии выработать около 1 квт/ч, стоимость производства которой составляет (условно) 1 коп. В высоко электрифицированных отраслях промышленности установленная мощность электродвигателей на одного рабочего составляет 4-5 квт (этот показатель называется электровооруженность труда). При восьмичасовом рабочем дне получаем потребление 3-40 квт/ч. Это значит, что рабочий управляет механизмами, работа которых за смену эквивалентна работе 3-40 человек. Еще большая эффективность ЭП наблюдается в горнодобывающей промышленности. Например, на шагающем экскаваторе типа ЭШ-15/15, имеющим стрелу 15 метров и ковш емкостью 15 кубических метров, мощностью одного асинхронного двигателя составляет 8, МВт. На прокатных станах 9

11 установленная мощность ЭД составляет более 60 МВт, а скорость прокатки 16 км/ч. Именно поэтому было так важно обеспечить широкое внедрение электропривода в народное хозяйство. Количественно это характеризуется коэффициентом электрификации, равным отношению мощности электродвигателей к мощности всех установленных двигателей, в том числе и неэлектрических. Динамику роста коэффициента электрификации в России можно проследить по табл Таблица 1.1 значение коэффициента электрификации, % год около В результате выполнения плана ГОЭЛРО СССР в 198 году по коэффициенту электрификации обогнал Англию, в 1936 г. перегнал Германию и догнал США, тем самым ликвидировав отсталость России от ведущих мировых держав. В настоящее время ЭП занял господствующее положение в народном хозяйстве и потребляет порядка /3 всей производимой электрической энергии в стране (около 1,5 трл. квт/ч). Так что же такое электропривод? Согласно ГОСТ Р электрическим приводом называется электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов (ИО) рабочей машины 10

12 Электрическая сеть Преобразовательное устройство Электродвигательное устройство Управляющее информационное устройство Передаточное устройство Рабочая машина Исполнительный орган электрическая связь механическая связь Рис Структурная схема автоматизированного электропривода (РМ) и управления этим движением в целях осуществления технологического процесса . Данное определение проиллюстрировано на рис Расшифруем составные части . Преобразовательное устройство (преобразователь электроэнергии) электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества. (Отметим, что преобразование параметров может осуществляться по роду тока, напряжению, частоте, числу фаз, фазе напряжения, согласно ГОСТ 18311). Преобразователи классифицируют по току (постоянного и переменного тока), а также по элементной базе тиристорные и транзисторные преобразователи. 11

13 Электродвигательное устройство (электромеханический преобразователь) электротехническое устройство, предназначенное для преобразования электрической энергии в механическую или механической в электрическую. Применяемые в электроприводе электродвигатели могут быть переменного и постоянного тока. По мощности электрические машины можно условно разделить на: микромашины до 0,6 квт. машины малой мощности до 100 квт. машины средней мощности до 1000 квт. большой мощности свыше 1000 квт. По скорости вращения: тихоходные до 500 об/мин. средней скорости до 1500 об/мин. быстроходные до 3000 об/мин. сверхбыстроходные до об/мин. По номинальному напряжению бывают низковольтные двигатели (до 1000 В) и высоковольтные (выше 1000 В). Управляющее информационное устройство. Управляющее устройство предназначено для формирования управляющих воздействий в электроприводе и представляет собой совокупность функционально связанных между собой электромагнитных, электромеханических, полупроводниковых элементов. В простейшем случае управляющее устройство может сводится к обычному рубильнику, включающему ЭД в сеть. Высокоточные ЭП содержат в управляющем устройстве микропроцессоры и ЭВМ. Информационное устройство предназначено для получения, преобразования, хранения, распределения и выдачи информации о переменных ЭП, технологического процесса и сопредельных систем для использования в системе управления электропривода и внешних информационных системах. Передаточное устройство состоит из механической передачи и устройства сопряжения. Механическая передача это механический преобразователь, предназначенный для переда- 1

14 чи механической энергии от ЭД к исполнительному органу рабочей машины и согласованию вида и скоростей их движения. Устройство сопряжения совокупность электрических и механических элементов, обеспечивающих взаимодействие электропривода с сопредельными системами и отдельных частей электропривода между собой. В качестве передаточного устройства могут выступать редукторы, клиноременные и цепные передачи, электромагнитные муфты скольжения и т.п. Рабочая машина машина, осуществляющая изменение формы, свойств, состояния и положения предмета труда. Исполнительный орган рабочей машины движущийся элемент рабочей машины, выполняющий технологическую операцию. Данные определения необходимо дополнить. Система управления электропривода совокупность управляющих и информационных устройств и устройств сопряжения ЭП, предназначенных для управления электромеханическим преобразованием энергии с целью обеспечения заданного движения исполнительного органа рабочей машины. Система управления электроприводом внешняя по отношению к электроприводу система управления более высокого уровня, поставляющая необходимую для функционирования электропривода информацию. 13

15 ЛЕКЦИЯ ЭЛЕКТРИЧЕСКИЙ ПРИВОД ОСНОВНОЙ ЭЛЕМЕНТ СИСТЕМ КОМПЛЕКСНОЙ МЕХАНИЗАЦИИ И АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В МАШИННОМ ПРОИЗВОДСТВЕ Вопросы, рассматриваемые в лекции. 1. Структурная эволюция электроприводов.. Различные типы электроприводов, используемые в промышленности и сельском хозяйстве. 3. Основные тенденции развития электроприводов. 4. Структура ЭП с позиций "Теории электропривода". За годы своего существования электропривод претерпел коренные изменения. В первую очередь, совершенствовались способы передачи механической энергии от двигателей к рабочим машинам. Например, в нашей стране до начала первой пятилетки (198) господствовал групповой электропривод "электропривод с одним электродвигателем, обеспечивающий движение исполнительных органов нескольких рабочих машин или нескольких ИО одной рабочей машины" , но уже к концу первой пятилетки (193) он был изъят из промышленности. На рис..1 показана функциональная схема группового электропривода предприятия. Особенность данной схемы в механическом распределении энергии по всему предприятию и, соответственно, в механическом управлении процессом, т.е. управлении работой исполнительных органов рабочих машин. На рис.. показана другая схема группового ЭП группового электропривода рабочих машин. В отличии от предыдущей схемы электрическая энергия здесь подводится непосредственно к РМ, а уже в них происходит ее механическое распределение. Сохраняется механическое управление работой. К числу общих недостатков группового электропривода можно отнести: ступенчатое регулирование скорости; 14

16 Электрическая сеть U, I электрическая энергия ЭД трансмиссионный вал M, ω механическая энергия РМ 1 РМ ИО 1 ИО ИО 3 ИО 1 ИО ИО 3 Рис..1. Групповой электропривод предприятия Электрическая сеть ЭД 1 ЭД РМ 1 РМ ИО 1 ИО ИО 3 ИО 1 ИО ИО 3 Рис... Групповой электропривод рабочих машин малый диапазон регулирования; опасные условия труда; малая производительность. Групповой электропривод был заменен более перспективным и экономичным индивидуальным электроприводом это "ЭП, обеспечивающий движение одного исполнительного органа рабочей машины" , функциональная схема показана 15

17 на рис..3. В таком варианте электропривода распределение электрической энергии происходит вплоть до рабочих органов. Также появляется возможность управления механической энергией электрическим способом. Кроме этого, индивидуальный привод позволяет в ряде случаев упростить конструкции РМ, т.к. ЭД нередко конструктивно является рабочим органом (вентилятор, электродрель и т.п.). Электрическая сеть РМ ЭД 1 ЭД ЭД 3 ИО 1 ИО ИО 3 Рис..3. Индивидуальный электропривод В настоящее время индивидуальный ЭП это основной тип промышленно используемого электропривода. Но не единственный. В ряде производственных механизмов находит применение взаимосвязанный электропривод это "два или несколько электрически или механически связанных между собой электроприводов, при работе которых поддерживается заданное соотношение их скоростей и (или) нагрузок и (или) положения исполнительных органов рабочих машин". Этот тип электропривода объединяет два вида электроприводов многодвигательный ЭП и электрический вал. Многодвигательный электропривод (рис..4) "электропривод, содержащий несколько электродвигателей, механическая связь между которыми осуществляется через исполнительный орган рабочей машины" . Подобный электропривод в ряде случаев позволяет снизить усилия в рабочем органе, распределить их в механизме более равномерно и без перекосов, повысить надежность и производительность установки. 16

18 Электрическая сеть ЭД 1 РМ ЭД Рис..4. Многодвигательный электропривод Многодвигательный электропривод применяется в шахтных подъемниках, в частности впервые был использован в Шепетовке в конце XIX века. Электрический вал "взаимосвязанный электропривод, обеспечивающий синхронное движение двух или более исполнительных органов рабочей машины, не имеющих механической связи" . В качестве примера можно привести приводы шлюзов и длинные конвейерные линии. На рис..5 приведена схема конвейера на асинхронных ЭД с фазным ротором, поясняющая принцип работы электрического вала. Частоты вращения ω 1 и ω, благодаря электрическому соединению роторов электродвигателей, будут одинаковыми или синхронными. ω 1 лента конвейера ω ЭД 1 ЭД электрический вал Рис..5. Иллюстрация работы электрического вала Современный электропривод отличается широким разнообразием применяемых средств управления от обычной коммутационной аппаратуры до управляющих ЭВМ, большем 17

19 диапазоном мощностей ЭД от долей ватта до квт, диапазоном регулирования скоростей до 10000:1 и более, применением как тихоходных двигателей (сотни об/мин), так и сверхскоростных (до об/мин). ЭП является основой автоматизации технологических объектов в промышленности, сельском хозяйстве, космосе; реализуя важнейшую задачу современности повышение производительности труда. В настоящее время для электропривода характерна тенденция использования энергосберегающих технологий. К традиционным системам, позволяющим возвращать энергию в сеть (этот процесс называется рекуперацией), таким как система генератор-двигатель (система Г-Д), электрический каскад (регулируемый ЭП с АД с фазным ротором, в котором энергия скольжения возвращается в электрическую сеть), электромеханический каскад (регулируемый ЭП с АД с фазным ротором, в котором энергия скольжения преобразуется в механическую и передается на вал ЭД), происходит массовая замена нерегулируемого электропривода на регулируемый. Как следствие этого, конструкция ЭП становится безредукторной, что повышает общий КПД привода. Прогресс в области конструирования преобразовательной техники, в частности, для преобразователей частоты стимулирует замену двигателей постоянного тока и синхронных ЭД на более дешевые и надежные асинхронные ЭД с короткозамкнутым ротором. Если рассматривать электродвигательные установки с позиций теории электропривода, то как объект изучения это электромеханическая система, являющаяся совокупностью механических и электромеханических устройств, объединенных общими силовыми электрическими цепями и (или) цепями управления, предназначенная для осуществления механического движения объекта. В электроприводе в единое целое объединяется три части (рис.6): механическая часть, электрический двигатель и система управления. 18

20 Эл. сеть Эл. двигатель М, ω Мех. часть Полезная механическая работа ЭСУ ЭМП РД ПУ ИМ ДОС М мех к ДОС ИСУ от ДОС Система управления от ЗУ Рис..6. Функциональная схема ЭП с позиций теории электропривода Механическая часть включает все движущиеся элементы механизма ротор двигателя РД, передаточное устройство ПУ, исполнительный механизм ИМ, на который передается полезный механический момент М мех. В электродвигательное устройство входят: электромеханический преобразователь энергии ЭМП, преобразующий электрическую мощность в механическую, и ротор двигателя РД, на который воздействует электромагнитный момент М двигателя при частоте вращения (угловой скорости) ω. Система управления (СУ) включает в себя энергетическую часть ЭСУ и информационную часть ИСУ. На ИСУ поступают сигналы от задающих устройств ЗУ и датчиков обратной связи DOC. 19

21 ЛЕКЦИЯ 3 МЕХАНИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОПРИВОДА Вопросы, рассматриваемые в лекции. 1. Назначение и основные механические узлы ЭП.. Активный и реактивный статические моменты. 3. Типовые нагрузки механической части электропривода. Основной функцией электропривода является приведение в движение рабочей машины в соответствии с требованиями технологического режима. Движение это совершается механической частью электропривода (МЧ ЭП), в состав которой входит ротор электродвигателя, передаточное устройство и рабочая машина (рис. 3.1). Приведенные на рис. 3.1 параметры обозначают М в, М рм, М ио моменты на валу двигателя, рабочей машины, исполнительного органа; ω в, ω рм, ω ио угловые скорости вала ЭД, рабочей машины, исполнительного органа; F ио, V ио усилие и линейная скорость исполнительного органа. Ротор М в ω в Передаточное устройство М рм ω рм Рабочая машина М ио ω ио F ио V ио Рис.3.1. Схема механической части электропривода В зависимости от вида передачи и конструкций рабочей машины различают (рис. 3.1): ЭП вращательного движения, обеспечивающий, соответственно, вращательное движение исполнительного органа РМ; выходные параметры момент ИО механизма М ио и угловая частота вращения ω ио; ЭП поступательного движения, обеспечивающий поступательное линейное движение ИО рабочей машины; выходные параметры усилие F ио и линейная скорость V ио. 0

22 Отметим, что существует также специальный ЭП, называемый колебательным электроприводом, обеспечивающим возвратно-поступательное (вибрационное) движение (как угловое, так и линейное) исполнительного органа РМ. В механической части ЭП действуют различные виды усилий, моментов, различающиеся характером действия. Конкретно различают статические моменты реактивные М ср и активные М са. Реактивные моменты создаются силой трения, силами сжатия, растяжения, кручения неупругих тел. Классическим примером здесь может служить сухое трение (рис. 3.). Силы трения всегда противодействуют движению и при реверсе электропривода момент трения, обусловленный этими силами, также меняет направление, а функция М с (ω) при скорости ω = 0 претерпевает разрыв. Силы трения проявляются в передачах электродвигателя и рабочих машинах. F m V F тр ω F тр V m F М ср М ср М с Рис. 3.. Зависимость статического момента сил сухого трения от скорости Активные (потенциальные) моменты создаются силой тяжести, силами сжатия, растяжения, кручения упругих тел. В МЧ ЭП активные моменты возникают в нагруженных элементах (валы, зубчатые зацепления и т.п.) при их деформации, поскольку механические связи не являются абсолютно жесткими. Особенности действия потенциальных моментов наглядно проявляются на примере силы тяжести. При подъеме или 1

23 спуске груза направление силы тяжести F j остается постоянным. Иными словами, при реверсе электропривода направление активного момента М са сохраняется неизменным (рис. 3.3). ω М с V V М са Рис Зависимость активного статического момента от скорости, характерная для механизмов подъема грузов Краткий анализ видов М с показывает, что между реактивными и активными моментами имеется существенное отличие: реактивный момент с изменением направления движения также меняет свое направление, активный же момент сохраняет его постоянным. Рабочие машины, несмотря на большое многообразие конструкций и выполняемых операций, могут быть классифицированы по виду зависимости статического момента от ряда факторов. Различают укрупненно 5 групп механизмов. К первой группе относятся механизмы, у которых статический момент не зависит от скорости вращения, то есть М с (ω) = const. Это значит, что механическая характеристика рабочей машины зависимость статического момента от частоты вращения представляет прямую, параллельную оси угловой скорости ω, и претерпевает разрыв при ω = 0 для реактивных статических моментов (как показано на рис. 3.), например, для ленточного транспортера с равномерной погонной нагрузкой. F j m

24 Для активных М с (как показано на рис. 3.3) механическая характеристика не зависит от направления движения. Типичным примером является механизм подъемника. Вторая группа механизмов достаточно представительна [, 3]. Здесь М с зависит от скорости вращения РМ: () = М + (М + М) Мс с0 сн с0 а ω ωн ω, (3.1) где М со момент механических потерь на трение; М сн статический момент рабочей машины при номинальной скорости вращения ω н; ω текущая скорость вращения; а коэффициент пропорциональности. При а = 0 имеем М с (ω) = М сн, то есть получаем механическую характеристику машин первой группы. При а = 1 имеем линейную зависимость статического момента от скорости, что присуще, например, генераторам G постоянного тока, работающим на постоянное сопротивление R (рис. 3.4). ~ U 1, f 1 G R ω М с (ω) U ов ОВ М с0 М с Рис Механическая характеристика при а = 1 При а = (рис. 3.5) получаем наиболее многочисленную группу рабочих механизмов [, 3], имеющих вентиляторную характеристику (вентиляторы, гребные винты, центробежные насосы и другие подобные механизмы). 3

25 ~ U 1, f 1 ω М с (ω) М с0 Рис Вентиляторная механическая характеристика При а = -1 имеет место гиперболическая зависимость, характерная для большинства металлорежущих станков, когда с увеличением скорости подачи резца V (соответственно при этом увеличивается усилие резания) снижает скорость обработки детали ω (рис. 3.6). М с ~ U 1, f 1 ω V ω М с (ω) Рис Гиперболическая механическая характеристика Отметим, что на практике встречаются и другие значения коэффициента а. Третья группа механизмов это группа машин, у которых статический момент является функцией угла поворота вала РМ α, то есть М с = f(α). Это свойственно, например, шатунно-кривошипным (рис 3.7) и эксцентриковым механизмам, в которых происходит преобразование вращательного движения с частотой вращения ω в возвратно-поступательное движение со скоростью V. Рабочий ход механизма, при котором достига- 4 М с0 М с

26 ется максимальный статический момент M cmax, имеет место, например, при 0 α π, обратный ход с максимальным моментом при π α π. M cmax, хх ω М с M cmax М с (α) M cmax, õõ V М с Рис Зависимость М с от угла поворота кривошипа α Четвертая группа механизмов это группа рабочих машин, у которых М с зависит одновременно и от угла поворота, и от скорости движения, т.е. М с = f(α, ω) Подобная зависимость наблюдается при движении электротранспорта на закругленном участке пути. Пятая группа механизмов группа РМ, у которых статический момент изменяется случайным образом во времени. К ней можно отнести геологические буровые станки, дробилки крупного дробления и другие подобные механизмы (рис. 3.8). α М с ω М с (t) 0 t Рис Зависимость М с = f(t) при бурении горных пород 5

27 ЛЕКЦИЯ 4 ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Вопросы, рассматриваемые в лекции. 1. Конструкция машин постоянного тока.. Основные параметры и электромеханическое преобразование энергии в машинах постоянного тока. 3. Классификация электродвигателей постоянного тока. 4. Ориентировочное определение сопротивления якоря. Электрическая машина постоянного тока (МПТ) имеет специфическую конструкцию. Схематически на примере электродвигателя П-9 она показана на рис Неподвижная часть (статор) содержит главные полюса 1 с катушками, образующие индуктор или систему возбуждения машины. Полюса равномерно распределены на внутренней поверхности станины 3, которая совмещает функции механической детали (корпуса) и активной части (ярма магнитопровода статора). Поскольку через станину (ярмо) проходит постоянный магнитный поток, не индуктирующий в ней вихревых токов, то она выполняется монолитной стальной. Сердечники главных полюсов чаще всего выполняются шихтованными: они состоят из отдельных пластин, стянутых заклепками, шпильками или др. Такое конструктивное решение используется не для ограничения вихревых токов, а скорее диктуется удобством изготовления полюса. Кроме обмоток возбуждения (ОВ) главные полюса МПТ могут содержать компенсационную обмотку, предназначенную для компенсации размагничивающего действия собственного магнитного поля якоря (реакции якоря), а также стабилизирующую обмотку, используемую для тихоходных двигателей большой мощности при необходимости временного увеличения частоты вращения в,5 раза. Для обеспечения безыскровой коммутации в машине предусмотрены добавочные полюса 4, обмотки которых включаются последовательно в цепь ротора. 6

28 Рис Машина постоянного тока типа П-9 Ротор МПТ чаще называют якорем. Он несет главную обмотку машины, по которой течет ее основной ток. Якорная обмотка 5 располагается в пазах магнитопровода 6. Выводы 7

29 обмотки соединены с пластинами коллектора 7. Магнитопровод и коллектор размещены на общем валу 8. Для нормальной работы машины постоянного тока пазы магнитопровода должны быть строго сориентированы относительно пластин 7. К внешней (активной) поверхности коллектора прижимаются токосъемные щетки. (угольными, графитовыми, композитными и др.). Одна группа может содержать одну или несколько щеток, в зависимости от пропускаемого через контакт тока. Важное значение имеет площадь контакта (прилегание желательно обеспечить близким к 100%) и сила нажатия щетки к коллектору. Щетки устанавливаются в щеткодержатели, которые ориентируют и прижимают щетку. Сами же щеткодержатели размещают на специальных пальцах траверсы 9, смонтированной на внутренней стороне подшипникового щита 10. Траверса имеет возможность поворота вокруг оси машины и фиксации ее в любом выбранном положении, что позволяет при необходимости регулировать положение щеток на коллекторе из условия минимального искрения в щеточном контакте. Машины постоянного тока чаще используются в качестве двигателей, они обладают высоким пусковым моментом, возможностью широко регулировать скорость, легко реверсируются, имеют практически линейные регулировочные характеристики, экономичны. Эти достоинства МПТ часто ставят их вне конкуренции в приводах, требующих широких и точных регулировок. Важным преимуществом МПТ является также возможность их регулирования по слаботочным цепям возбуждения. Тем не менее, используют эти машины только там, где невозможно подобрать равноценную замену. Связано это с наличием щеточно-коллекторного узла, который обуславливает большинство недостатков МПТ: повышает стоимость, сокращает ресурс работы, создает радиопомехи, акустический шум. Искрение под щетками ускоряет износ щеток и пластин коллектора. Продукты износа покрывают внутреннюю полость 8

30 машины тонким проводящим слоем, ухудшая изоляцию токопроводящих цепей. Работа электродвигателя и генератора постоянного тока характеризуется следующими основными величинами: М электромагнитный момент, развиваемый электродвигателем, Н м; М c момент сопротивления (нагрузка, статический момент), создаваемый производственным механизмом, Н м, обычно является приведенным к валу электродвигателя (формулы приведения рассматриваются в лекции 14); I я ток якоря электродвигателя, А; U напряжение, приложенное к якорной цепи, В; Е электродвижущая сила (ЭДС) машины постоянного тока (для электродвигателя ее называют противо-эдс, так как в электродвигателе она направлена навстречу напряжению U и препятствует протеканию тока), В; Ф магнитный поток, создаваемый в электродвигателе при протекании тока возбуждения по ОВ, Вб; R я сопротивление цепи якоря, Ом; ω угловая частота (скорость) вращения якоря ЭД, с -1 (вместо ω часто употребляется величина n, об/мин), 60 ω n =. (4.1) π Р мощность двигателя, Вт, различают механическую (полезную) мощность на валу ЭД Р мех и полную (электрическую) мощность Р мех = М ω, (4.) Р эл = U I я; (4.3) η коэффициент полезного действия МПТ, равный отношению полезной мощности к полной; λ коэффициент перегрузочной способности, различают перегрузочную способность по току λ I и по моменту λ М: 9

31 λ I = I max /I н; λ М = M max /M н. Взаимосвязь параметров МПТ отражена в следующих четырех формулах: dω M M = c dt J, (4.4) E = K Ф ω, (4.5) U E Iя =, R я (4.6) М = К Ф I я, (4.7) где J момент инерции системы электропривода, кг м; dω/dt угловое ускорение вала электродвигателя, c -1 ; К конструктивная постоянная электродвигателя, pn N K =, (4.8) π a где pn число пар главных полюсов; N число активных проводников якоря; a число пар параллельных ветвей якоря. Формула (4.4) является видоизмененной записью основного уравнения движения электропривода dω M Mc = J. (4.9) dt Отметим, что основное уравнение движения является аналогом закона Ньютона a = F/m. Разница лишь в том, что для вращательного движения линейное ускорение заменяется угловым ускорением ε = dω/dt, масса m моментом инерции J, а сила F заменяется динамическим моментом М дин, равным разности момента электродвигателя М и статического момента М с. Формула (4.5) отражает принцип действия генератора постоянного тока, основанный на законе электромагнитной индукции. Для того, чтобы появилась ЭДС, достаточно вращать якорь с некоторой скоростью ω в магнитном потоке Ф. 30

32 ЭДС Е в машине получить невозможно, если отсутствует хотя бы одна из величин: ω (электродвигатель не вращается) или Ф (машина не возбуждена). Формула (4.6) показывает, что ток I я в якорной цепи протекает в двигателе под действием приложенного к якорю напряжения U. Величина этого тока ограничивается вырабатываемой при вращении электродвигателя противо-эдс и суммарным сопротивлением якорной цепи. Формула (4.7) фактически иллюстрирует принцип действия ЭД постоянного тока, основанный на законе взаимодействия тока в проводнике и магнитного поля (закон Ампера). Для возникновения вращающего момента необходимо создать магнитный поток Ф и пропустить ток I я по обмотке якоря. Приведенные формулы описывают все основные процессы в электродвигателе постоянного тока. МПТ различают по способу включения обмотки главных полюсов (обмотки возбуждения) в электрическую цепь. 1. Машины постоянного тока с независимым возбуждением. Суть термина в том, что электрическая цепь обмотки возбуждения (ОВ) является независимой от силовой цепи ротора ЭД. Для генераторов это практический единственный вариант схемного решения, т.к. по цепи возбуждения происходит управление работой МПТ. Возбуждение в двигателях постоянного тока с независимым возбуждением (ДПТ НВ) может быть выполнена на постоянных магнитах. ДПТ НВ с традиционной ОВ имеют два канала управления напряжением ротора и напряжением обмотки возбуждения. ДПТ НВ являются самыми массовыми электрическими машинами постоянного тока.. Электродвигатели с параллельным возбуждением (ДПТ ПВ). Характеризуются включением ОВ параллельно с цепью якоря ЭД. По своим характеристика близки к ДПТ НВ. 3. ЭД с последовательным возбуждением (ДПТ Посл.В). Обмотка статора включается последовательно с обмоткой ротора, что обуславливает зависимость магнитного потока от то- 31

33 ка якоря (фактически от нагрузки). Имеют нелинейные характеристики, на практике используются редко. 4. Двигатели со смешанным возбуждением являются компромиссным вариантом ЭД с последовательным и параллельным возбуждением. Соответственно в ЭД присутствуют две ОВ параллельная и последовательная. Если неизвестна величина сопротивления обмотки якоря, то можно воспользоваться приближенной формулой. Предполагая, что половина потерь мощности связана с потерями в меди обмотки якоря, запишем формулу I н R я 0,5 (1-η) U н I н, (4.10) где η КПД электродвигателя, Из формулы находим R (1 η) U М U н н η =. н ω I н н н н я; или я. (4.11) Iн Iн R U н I Р 3

34 ЛЕКЦИЯ 5 МЕХАНИЧЕСКИЕ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА НЕЗАВИСИМОГО ВОЗБУЖДЕНИИ Вопросы, рассматриваемые в лекции. 1. Естественные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ).. Жесткость статической характеристики. 3. Система относительных единиц. 4. Механические и электромеханические характеристики ДПТ НВ в относительных единицах. Прежде чем перейти к рассмотрению характеристик ДПТ НВ, дадим некоторые определения. Механическими характеристиками (МХ) двигателя называются зависимости установившейся частоты вращения от вращающего момента n = f 1 (M) или ω = f (M). Электромеханическими характеристиками (ЭМХ) двигателя называются зависимости установившейся частоты вращения от тока n = f 3 (I) или ω = f 4 (I). Как МХ, так и ЭМХ могут быть представлены и обратными функциями M = ϕ 1 (n) или I = ϕ 4 (ω). Характеристики называют естественными, если они получены при номинальных условиях питания (при номинальных напряжении и частоте вращения), номинальном возбуждении и отсутствии добавочных сопротивлений в цепи якоря. Характеристики двигателя называются искусственными при изменении любого из перечисленных выше факторов. Для вывода электромеханической и механической характеристик двигателя постоянного тока с независимым (параллельным) возбуждением рассмотрим простейшую схему включения двигателя (рис. 5.1). 33

35 U + - I Е ДП КО R доп I в ОВ R ДВ + U в - Рис Схема электрическая принципиальная двигателя постоянного тока независимого возбуждения К якорю электродвигателя прикладывается напряжение сети постоянного тока U c = U, которое в установившемся режиме уравновешивается ЭДС (Е) двигателя и падением напряжения в цепи якоря (I я R яц). U = Е + I я R яц, (5.1) где R яц = R я + R доп + R дп + R ко полное сопротивление цепи якоря, Ом; R я сопротивление обмотки якоря, Ом; R доп добавочное сопротивление в цепи якоря, Ом; R дп, R ко соответственно, сопротивления обмоток дополнительных полюсов и компенсационной обмотки, Ом. Класс изоляции Таблица 5.1 Рабочая температура, С А 105 Е 10 В 130 F 155 Н 180 С > Необходимо отметить, что для продолжения расчетов необходимо привести сопротивление обмоток ЭД к рабочей температуре, которая определяется классом изоляции (табл. 5.1) и учесть потери в щеточноколлекторном узле. Приведение сопротивления обмоток в цепи якоря

36 к рабочей температуре t, С, осуществляется по следующей формуле: R = R (1 + α θ), (5.) где R яц t 0 яц t яц t 0 суммарное сопротивление обмоток при температуре t0, определяемое по паспортным данным, Ом; α температурный коэффициент, (С) -1, для меди 3 обычно принимают α = 4 10 (С) -1 ; θ разность между рабочей температурой и t 0, С. Добавочное сопротивление в щеточно-коллекторном узле можно учесть как отношение падения напряжения на контакте щетка коллектор U щ = В к номинальному току якоря. Подставив в уравнение (5.1) значение Е согласно (4.5) и произведя соответствующие преобразования относительно частоты вращения ω, получим электромеханическую характеристику электродвигателя постоянного тока независимого (параллельного) возбуждения U Iя R яц U R яц ω = = Iя. (5.3) KФн KФн KФн Выразив величину тока якоря через электромагнитный момент (4.7) и подставив значение тока в уравнение (5.3), найдем механическую характеристику двигателя постоянного тока с независимым (параллельным) возбуждением: U R яц ω = M. (5.4) KФ () н KФн Анализируя уравнения (5.3) и (5.4), видим, что математически это уравнения прямой линии, пересекающей ось скоростей в точке ω 0. Величина ω 0 = U/(К Ф) называется скоростью идеального холостого хода, а соотношения R яц R яц Iя = M = ω c (5.5) КФ КФ () 35

37 называют статическим перепадом скорости относительно ω 0, вызванное наличием статического момента на валу двигателя. Правомерна следующая формула ω = ω 0 - ω с. (5.6) Для построения естественной механической характеристики (ЕМХ) необходимо найти две точки. Одна из них определяется из паспортных данных двигателя для номинальных значений n н и М н: ω н = π n н /30 = 0,105 n н, М н = P н /ω н, где P н номинальная мощность двигателя, Вт; n н номинальная частота вращения ЭД, об/мин. Вторая точка соответствует идеальному холостому ходу, когда I = 0; М = 0. Ее можно найти из уравнения (5.3) при подстановке паспортных данных двигателя: Uн ω ω н 0 =. (5.7) Uн Iн R я Построение естественной электромеханической характеристики (ЕЭМХ) происходит аналогичным образом с использованием паспортного значения номинального тока I н. ЕМХ можно построить, зная ω 0 и наклон характеристики, представляющей собой прямую линию. Величину наклона определяют по производной dm/dω = β с, получившей название статической жесткости механической характеристики (KФ) dm β с = =. (5.8) dω R яц На практике используют модуль статической жесткости β = β с. Величина β зависит от сопротивления якорной цепи и магнитного потока возбуждения. С учетом сказанного уравнение механической характеристики можно записать как ω = ω 0 М / β. (5.9) 36

38 Сравнить различные по мощности, току, моменту, числу пар полюсов электрические двигатели позволяет представление характеристик ЭД в относительных единицах. Система относительных единиц достаточно часто используется в технических расчетах и основана на принятии некоторой произвольной величины за базовую. Абсолютные значения параметров одной физической природы k i, отнесенные к базовой величине k баз, можно сравнивать между собой. В относительных единицах o k k i i =. (5.10) kбаз Для анализа характеристик двигателя постоянного тока независимого возбуждения за базовые величины примем: U н номинальное напряжение; I н номинальный ток двигателя; М н номинальный момент двигателя; ω 0 скорость идеального холостого хода; Ф н номинальный магнитный поток. Базовое значение сопротивления обычно определяют как R баз = U н / I н, (5.11) где R баз имеет следующий физический смысл это сопротивление цепи якоря, которое ограничивает ток якоря до номинального значения в заторможенном состоянии (ω = 0) и приложенном номинальном напряжении. Чтобы выразить электромеханическую характеристику (5.3) в относительных единицах, необходимо разделить правую и левую части уравнения на скорость идеального холостого хода ω 0 ЕЭМХ. В результате получим выражение o o o U o R яц ω = I, (5.1) o o Ф Ф 37

39 ω где ω o o U o Ф o I o R яц = ; U = ; Ф = ; I = ; R яц =. ω 0 U н Ф н I н R баз Уравнение механической характеристики в относительных единицах можно получить из уравнения (5.1) после подстановки в него выражения I =, где M =. o o M o M o M Ф н Естественные характеристики ДПТ НВ в относительных единицах примут вид: а) электромеханическая б) механическая o o o R яц ω = 1 I, (5.13) o o o ω = 1 М R яц. (5.14) o o с I R o яц М o o яц Статический перепад скорости ω = = R, o o откуда следует, что I = М. Таким образом, в относительных единицах естественные механическая и электромеханическая характеристики совпадают. При М = М н и I = I н из уравнений (5.13) и (5.14) видно, что статический перепад при номинальной нагрузке равен сопротивлению цепи якоря в относительных единицах, то есть o = R o ωсн яц. Величина яц зависит от мощности двигателя и находится в пределах 0, 0,0 для ДПТ НВ мощностью от 0,5 до 1000 квт. Зная относительное сопротивление якоря, нетрудно определить ток короткого замыкания в относительных единицах I к = o Iк I o o o Iк U R яц н. R o =, в абсолютных единицах этот ток равен 38

40 ЛЕКЦИЯ 6 РЕГУЛИРОВАНИЕ СКОРОСТИ В ДВИГАТЕЛЕ ПОСТОЯННОГО ТОКА Вопросы, рассматриваемые в лекции. 1. Искусственные электромеханические (ИЭМХ) и механические (ИМХ) характеристики ДПТ НВ при изменении сопротивления ротора.. Искусственные электромеханические и механические характеристики ДПТ НВ при изменении магнитного потока. 3. Искусственные электромеханические и механические характеристики ДПТ НВ при изменении питающего напряжения. Реостатное регулирование частоты вращения осуществляется путем введения в цепь якоря дополнительных активных сопротивлений резисторов, т.е. R яц = (R я + R дя) = var при U = U н, Ф = Ф н,. Как видно из уравнения механической характеристики (5.4), при варьировании величины добавочного сопротивления R дя в цепи якоря скорость идеального холостого хода ω 0 остается постоянной, изменяется лишь модуль статической жесткости β, а с ним и жесткость (крутизна) характеристики (рис. 6.1). Например, при введении добавочного резистора сопротивлением R дя = R я модуль статической жесткости искусственной механической характеристики (ИМХ) β и в два раза меньше, чем для естественной характеристики β е, т.е. β и = 0,5 β е. Соответственно в два раза возрастет статический перепад скорости ω = ω + ω = ω. ни не R дя В относительных единицах реостатную механическую характеристику можно записать o o o o o o ω = 1 М R яц = 1 М R яц + R дя (6.1) не 39


Аннотация рабочей программы дисциплины направление подготовки: 23.05.05 Системы обеспечения движения поездов направленность: Телекоммуникационные системы и сети железнодорожного транспорта Дисциплина:

Глава 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ И РЕГУЛИРОВОЧНЫЕ СВОЙСТВА ЭЛЕКТРОПРИВОДОВ ПОСТОЯННОГО ТОКА 2.1. Механические характеристики электродвигателей и рабочих механизмов Механической характеристикой электродвигателя

ОГЛАВЛЕНИЕ Предисловие......................................... 3 Введение............................................ 5 Глава первая Механическая часть электропривода..................... 7 1.1. Краткие

050202. Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики.

ВОПРОСЫ ВХОДНОГО КОНТРОЛЯ ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ «Переходные процессы в электроэнергетических системах» 1 2 I 1 2 V 1 1. = 80v, U = v 2. = 0v, U = 7 v 3. = 30v, U = v 8 2 Определить значение ЭДС

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р. Е.

МАШИНЫ ПОСТОЯННОГО ТОКА (МПТ) Назначение, области применения и устройство МПТ Генераторы постоянного тока (ГПТ) Двигатели постоянного тока (ДПТ) 1 МПТ обратимы, т. е. они могут работать в качестве: а)

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ 13.04.02 «Электроэнергетика и электротехника» 1.1 Настоящая Программа, составленная в соответствии с федеральным

Теоретические вопросы 1 Применение, устройство и виды трансформаторов 2 Принцип действия трансформатора, режимы работы 3 Схема замещения трансформатора и его внешняя характеристика 4 Опыты холостого хода

Государственное автономное профессиональное образовательное учреждение Самарской области «Новокуйбышевский нефтехимический техникум» РАБОЧАЯ ПРОГРАММА Дисциплина Электрические машины Специальность ППССЗ

Двигатели постоянного тока 2015 Томский политехнический университет, кафедра ЭСиЭ Лектор: к.т.н., доцент Васильева Ольга Владимировна 1 Двигатель постоянного тока электрическая машина, преобразующая электрическую

Вариант 1. 1. Назначение, классификация и устройство трансформатора. 2. Абсолютная и относительная погрешности измерения. Класс точности измерительного прибора. 3. При увеличении частоты вращения генератора

УДК 621.3.031.: 621.6.052(575.2)(04) МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ХАРАКТЕРИСТИКИ СИСТЕМЫ АСИНХРОННЫЙ ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ ЦЕНТРОБЕЖНЫЙ НАСОС К.К. Келебаев Разработана математическая модель и методика расчета

Тема 8.1. Электрические машины. Генераторы постоянного тока Вопросы темы 1. Электрические машины постоянного и переменного тока. 1. Устройство и принцип работы генератора постоянного тока. 2. ЭДС и вращающий

Асинхронные машины 2015 Томский политехнический университет, кафедра ЭСиЭ Лектор: к.т.н., доцент Васильева Ольга Владимировна Асинхронная машина это машина, в которой при работе возбуждается вращающееся

СОДЕРЖАНИЕ Предисловие ко второму изданию............................... 10 Предисловие к первому изданию................................ 12 Глава 1. Введение............................................

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н. ТУПОЛЕВА-КАИ» Зеленодольский институт машиностроения

ЛАБОРАТОРНАЯ РАБОТА 2 ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ Цель работы: 1. Изучить принцип действия и устройство двигателей постоянного тока. 2. Ознакомиться со схемой включения двигателя

Тема 0. Основы электропривода Вопросы темы. Электропривод: определение, состав, классификация.. Номинальные параметры электрических машин. 3. Режимы работы электродвигателей. 4. Выбор типа и мощности электродвигателя..

Перечень тем программы предмета «Электротехника» 1. Электрические цепи постоянного тока. 2. Электромагнетизм. 3. Электрические цепи переменного тока. 4. Трансформаторы. 5. Электронные устройства и приборы.

ТРЕХФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ С КОРОТКОЗАМКНУТЫМ РОТОРОМ Цель работы: 1 Ознакомиться с конструкцией трёхфазных асинхронных двигателей Изучить принцип работы асинхронных двигателей 3 Осуществить пуск

УДК 6213031 (5752) (04) РАЗРАБОТКА И ИССЛЕДОВАНИЕ СИЛОВОЙ ЧАСТИ ЭНЕРГОСБЕРЕГАЮЩЕЙ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТУРБОМЕХАНИЗМАМИ ТЭС ИВ Бочкарев Приведены результаты работ по созданию асинхронного

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ ГОУ СПО «Бахчисарайский колледж строительства, архитектуры и дизайна» Электротехника и электроника методические указания и контрольные задания

Тема 9. Электрические машины переменного тока Вопросы темы.. Классификация машин переменного тока.. Устройство и принцип работы асинхронного двигателя. 3. Создание вращающегося магнитного поля. 4. Скорость

Http://library.bntu.by/kacman-m-m-elektricheskie-mashiny Предисловие...З Введение... 4 В.1. Назначение электрических машин и трансформаторов... 4 В.2. Электрические машины электромеханические преобразователи

Тема 7 Трехфазные цепи переменного тока План 1. Общие понятия 2. Получение трехфазного тока 3. Соединения в звезду, треугольник Ключевые понятия: трехфазный ток фаза линейный провод нейтральный провод

Что такое электродвигатель? Электрический двигатель (электродвигатель) является устройством для преобразования электрической энергии в механическую и приведения в движение машин и механизмов. Электродвигатель

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ ТАДЖИКИСТАН УВЕРЖДАЮ Декан факультета Додхудоев М. Д. 2011 г. Примерная программа дисциплины «Теория Электропривода» Рекомендуется Министерством Образования Республики

РАБОТА 2 ИССЛЕДОВАНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА С ПАРАЛЛЕЛЬНЫМ ВОЗБУЖДЕНИЕМ Оглавление 1. Цель работы. 2 2. Программа работы. 2 3. Основы теории двигателя. 4. Экспериментальное исследование 3 4.1. Пуск

1 Электрические машины Общие сведения Лекции профессора Полевского В.И. Лекция 1 Электрическая машина представляет собой электромеханическое устройство, осуществляющее преобразование механической и электрической

МИНИСТЕРСТВО ОБРЗОВНИЯ И НУКИ РФ ФЕДЕРЛЬНОЕ ГОСУДРСТВЕННОЕ БЮДЖЕТНОЕ ОБРЗОВТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНЛЬНОГО ОБРЗОВНИЯ УФИМСКИЙ ГОСУДРСТВЕННЫЙ ВИЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КОМПЛЕКТ ТТЕСТЦИОННЫХ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Введение В синхронных машинах угловая скорость вращения ротора, Ω = 2πn, равна синхронной угловой скорости поля, Ω s = 2πn 1 (термин 37, с.15). Поля статора и ротора в синхронных машинах (как и во всех

3 Содержание Предисловие...5 Введение...7 I. Электромагнитный момент и электромагнитное усилие электрических машин вращательного и поступательного движения. 1. Общее выражение для момента и силы. 14 2.

Общие сведения об электродвигателях Электродвигатель. Виды электродвигателей и их конструктивные особенности. Устройство и принцип действия электродвигателя Электродвигатель преобразует электроэнергию

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 системы и технологии» Тема 1. Линейные цепи постоянного тока. 1. Основные понятия: электрическая цепь, элементы электрической цепи, участок электрической цепи. 2. Классификация

Четыре закона электромеханики Содержание: 1. Общие сведения 1.1. Преобразование энергии связано с вращающимися магнитными полями 1.2. Для обеспечения непрерывного преобразования энергии необходимо, чтобы

1 Синхронные электрические машины Общие сведения и элементы конструкции Лекции профессора Полевского В.И. Синхронными машинами называются электрические машины переменного тока, у которых магнитное поле,

Введение РАЗДЕЛ I Общая электротехника Глава 1. Электрические цепи постоянного тока 1.1. Основные понятия электромагнитного поля 1.2. Пассивные элементы цепей и их характеристики 1.3. Активные элементы

Примерный тематический план и содержание учебной дисциплины «Электротехника и электроника» Тема.. Электрические цепи постоянного тока Практическое занятие Расчет электрических цепей при последовательном,

Кацман М. М. Расчет и конструирование электрических машин: Учебное пособие для техникумов Рецензенты: Н. Г. Карельская, А. Е. Загорский Кацман М. М. К 30 Расчет и конструирование электрических машин: Учеб.

Асинхронныемашины Асинхроннаямашина этомашина, в которойприработевозбуждается вращающеесямагнитноеполе, норотор которойвращаетсяасинхронно, т.е. со скоростью, отличнойотскоростиполя. 1 Предложена русским

ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. Линейные электрические цепи постоянного тока... 4 1.1. Электротехнические устройства постоянного тока... 4 1.2. Элементы электрической цепи постоянного тока... 5 1.3.

9. МАШИНЫ ПОСТОЯННОГО ТОКА Машины постоянного тока являются обратимыми машинами, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. Двигатели постоянного тока имеют преимущества

Тема 13 Синхронные генераторы, двигатели План 1. Конструкция синхронного генератора 2. Принцип действия синхронного генератора 3. Конструкция синхронного двигателя 4. Принцип действия синхронного двигателя

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ ПЕРЕЧЕНЬ И СОДЕРЖАНИЕ РАЗДЕЛОВ (МОДУЛЕЙ) ДИСЦИПЛИНЫ п/п Модуль дисциплины Лекции, ч\заочн 1 Введение 0.25 2 Линейные электрические цепи постоянного тока 0.5 3 Линейные электрические

УДК 681.518.22+681.518.5: 621.313.333 В. Ю. ОСТРОВЛЯНЧИК, д.т.н., профессор, зав. каф. АЭП и ПЭ (СибГИУ) И. Ю. ПОПОЛЗИН, аспирант, ст. преподаватель каф. АЭП и ПЭ (СибГИУ) Г. Новокузнецк СРАВНИТЕЛЬНЫЙ

Предисловие 3 Введение 5 Глава первая. Электрические цепи постоянного тока 10 1.1. Получение и области применения постоянного тока 10 1.2. Элементы электротехнических установок, электрические цепи и схемы

М. И. КУЗНЕЦОВ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ПЯТОЕ ИЗДАНИЕ, ПЕРЕРАБОТАННОЕ ПОД РЕДАКЦИЕЙ КАНД. ТЕХН. НАУК С. В. СТРАХОВА Одобрено Ученым советом по профессионально-техническому образованию Главного управления

86 ВЕСТНИК ГГТУ ИМ. П. О. СУХОГО 16 УДК 61.313.1 СТЕНД ДЛЯ ИСПЫТАНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ В АВТОКОЛЕБАТЕЛЬНОМ РЕЖИМЕ И. В. ШАШКОВ, Ю. А. РУДЧЕНКО Учреждение образования «Гомельский государственный технический

ОГЛАВЛЕНИЕ Предисловие........................................ 5 1. Расчет мощности электроприводов металлорежущих станков 1.1. Общие сведения................................... 7 1.2. Строгальные станки...............................

ФАЖТ ФГОУ СПО Алатырский техникум железнодорожного транспорта Электрические машины Контрольное задание с краткими методическими указаниями для студентов заочного отделения специальности 190304.02 «Техническая

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ ЭЛЕКТРИЧЕСКИЙ ПРИВОД Контрольно-измерительные материалы Красноярск СФУ 2008 УДК 62-83(07) П12 Рецензент:

Управление образования и науки тамбовской области ТОГАПОУ «Аграрно-промышленный колледж» ПМ 3 «Техническое обслуживание, диагностирование неисправностей и ремонт электрооборудования и автоматизированных

Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра электропривода и автоматизации промышленных установок ЭНЕРГОСБЕРЕЖЕНИЕ СРЕДСТВАМИ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА

ТЕМА 1. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА Задание 1. В соответствии с Вашим вариантом задания (табл. 1, столбцы 2, 3, 4) начертите эскиз поперечного разреза двухполюсной машины постоянного тока и покажите

Промежуточная аттестация (в форме экзамена). Экзамен проходит в форме ответов на билеты. В каждом билете по 3 вопроса по одному из каждого задания. Всего билетов 28. 28 билет счастливый студент сам выбирает

УДК 621.313.323 О ЗАКОНАХ ЧАСТОТНОГО РЕГУЛИРОВАНИЯ СИНХРОННЫХ ДВИГАТЕЛЕЙ НА НЕФТЕПЕРЕКАЧИВАЮЩИХ СТАНЦИЯХ Шабанов В.А., Кабаргина О.В. Уфимский государственный нефтяной технический университет email: [email protected]

МИНОБРНАУКИ РОССИИ Федеральное бюджетное образовательное учреждение Высшего профессионального образования «Томский государственный архитектурно-строительный университет» (ТГАСУ) РАБОЧИЕ ХАРАКТЕРИСТИКИ